Replaced status checking for pumps & FCVs

See ReleaseNotes2_3.md.
This commit is contained in:
Lew Rossman
2020-02-07 10:44:52 -05:00
parent 80f9acfe4d
commit 3ee30ce019
5 changed files with 64 additions and 76 deletions

View File

@@ -7,7 +7,7 @@
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 10/04/2019
Last Updated: 02/07/2020
******************************************************************************
*/
@@ -59,9 +59,9 @@ static void valvecoeff(Project *pr, int k);
static void gpvcoeff(Project *pr, int k);
static void pbvcoeff(Project *pr, int k);
static void tcvcoeff(Project *pr, int k);
static void fcvcoeff(Project *pr, int k);
static void prvcoeff(Project *pr, int k, int n1, int n2);
static void psvcoeff(Project *pr, int k, int n1, int n2);
static void fcvcoeff(Project *pr, int k, int n1, int n2);
void resistcoeff(Project *pr, int k)
@@ -152,6 +152,8 @@ void headlosscoeffs(Project *pr)
gpvcoeff(pr, k);
break;
case FCV:
fcvcoeff(pr, k);
break;
case PRV:
case PSV:
if (hyd->LinkSetting[k] == MISSING) valvecoeff(pr, k);
@@ -285,8 +287,8 @@ void valvecoeffs(Project *pr)
** Input: none
** Output: none
** Purpose: computes coeffs. of the linearized hydraulic eqns.
** contributed by PRVs, PSVs & FCVs whose status is
** not fixed to OPEN/CLOSED
** contributed by PRVs & PSVs whose status is not
** fixed to OPEN/CLOSED
**--------------------------------------------------------------
*/
{
@@ -313,19 +315,8 @@ void valvecoeffs(Project *pr)
n2 = link->N2;
// Call valve-specific function
switch (link->Type)
{
case PRV:
prvcoeff(pr, k, n1, n2);
break;
case PSV:
psvcoeff(pr, k, n1, n2);
break;
case FCV:
fcvcoeff(pr, k, n1, n2);
break;
default: continue;
}
if (link->Type == PRV) prvcoeff(pr, k, n1, n2);
if (link->Type == PSV) psvcoeff(pr, k, n1, n2);
}
}
@@ -701,20 +692,31 @@ void pumpcoeff(Project *pr, int k)
}
// Obtain reference to pump object
q = ABS(hyd->LinkFlow[k]);
p = findpump(&pr->network, k);
pump = &pr->network.Pump[p];
// Prevent negative flow
q = hyd->LinkFlow[k];
if (q < 0.0)
{
hloss = -(SQR(setting) * pump->Hmax) + CBIG * q;
hgrad = CBIG;
hyd->P[k] = 1.0 / hgrad;
hyd->Y[k] = hloss / hgrad;
return;
}
// If no pump curve treat pump as an open valve
if (pump->Ptype == NOCURVE)
{
hyd->P[k] = 1.0 / CSMALL;
hyd->Y[k] = hyd->LinkFlow[k];
hyd->Y[k] = q;
return;
}
// Get pump curve coefficients for custom pump curve
// (Other pump types have pre-determined coeffs.)
q = ABS(q);
if (pump->Ptype == CUSTOM)
{
// Find intercept (h0) & slope (r) of pump curve
@@ -1044,12 +1046,10 @@ void psvcoeff(Project *pr, int k, int n1, int n2)
}
void fcvcoeff(Project *pr, int k, int n1, int n2)
void fcvcoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
** n1 = upstream node of valve
** n2 = downstream node of valve
** Output: none
** Purpose: computes solution matrix coeffs. for flow control
** valve
@@ -1059,40 +1059,28 @@ void fcvcoeff(Project *pr, int k, int n1, int n2)
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
int i, j; // Rows in solution matrix
double q; // Valve flow setting
double qset; // Valve flow setting
double flow; // Current valve flow
double hloss, hgrad; // Head loss & gradient
q = hyd->LinkSetting[k];
i = sm->Row[n1];
j = sm->Row[n2];
// If valve active, break network at valve and treat
// flow setting as external demand at upstream node
// and external supply at downstream node.
if (hyd->LinkStatus[k] == ACTIVE)
{
hyd->Xflow[n1] -= q;
hyd->Xflow[n2] += q;
hyd->Y[k] = hyd->LinkFlow[k] - q;
sm->F[i] -= q;
sm->F[j] += q;
hyd->P[k] = 1.0 / CBIG;
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
sm->Aii[i] += hyd->P[k];
sm->Aii[j] += hyd->P[k];
}
// Otherwise treat valve as an open pipe
else
// Treat as a regular valve if status fixed or flow below setting
qset = hyd->LinkSetting[k];
flow = hyd->LinkFlow[k];
if (qset == MISSING || hyd->LinkStatus[k] <= CLOSED || flow < qset)
{
valvecoeff(pr, k);
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
sm->Aii[i] += hyd->P[k];
sm->Aii[j] += hyd->P[k];
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
}
// Otherwise prevent flow from exceeding the setting
else
{
hyd->LinkFlow[k] = qset;
valvecoeff(pr, k);
hloss = hyd->Y[k] / hyd->P[k] + CBIG * (flow - qset);
hgrad = CBIG;
hyd->P[k] = 1.0 / hgrad;
hyd->Y[k] = hloss / hgrad;
hyd->LinkFlow[k] = flow;
}
}

View File

@@ -8,7 +8,7 @@
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 07/15/2019
Last Updated: 02/07/2020
******************************************************************************
*/
@@ -111,6 +111,7 @@ int hydsolve(Project *pr, int *iter, double *relerr)
maxtrials = hyd->MaxIter;
if (hyd->ExtraIter > 0) maxtrials += hyd->ExtraIter;
*iter = 1;
headlosscoeffs(pr);
while (*iter <= maxtrials)
{
// Compute coefficient matrices A & F and solve A*H = F
@@ -118,7 +119,6 @@ int hydsolve(Project *pr, int *iter, double *relerr)
// head loss gradients, & F = flow correction terms.
// Solution for H is returned in F from call to linsolve().
headlosscoeffs(pr);
matrixcoeffs(pr);
errcode = linsolve(sm, net->Njuncs);
@@ -138,6 +138,9 @@ int hydsolve(Project *pr, int *iter, double *relerr)
}
newerr = newflows(pr, &hydbal); // Update flows
*relerr = newerr;
// Compute head loss coeffs. for new flows
headlosscoeffs(pr);
// Write convergence error to status report if called for
if (rpt->Statflag == FULL)
@@ -243,7 +246,7 @@ int badvalve(Project *pr, int n)
if (n == n1 || n == n2)
{
t = link->Type;
if (t == PRV || t == PSV || t == FCV)
if (t == PRV || t == PSV)
{
if (hyd->LinkStatus[k] == ACTIVE)
{
@@ -253,8 +256,7 @@ int badvalve(Project *pr, int n)
clocktime(rpt->Atime, time->Htime), link->ID);
writeline(pr, pr->Msg);
}
if (link->Type == FCV) hyd->LinkStatus[k] = XFCV;
else hyd->LinkStatus[k] = XPRESSURE;
hyd->LinkStatus[k] = XPRESSURE;
return 1;
}
}

View File

@@ -7,7 +7,7 @@ Description: updates hydraulic status of network elements
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 05/15/2019
Last Updated: 02/07/2020
******************************************************************************
*/
@@ -141,18 +141,6 @@ int linkstatus(Project *pr)
hyd->LinkStatus[k] = cvstatus(pr, hyd->LinkStatus[k], dh,
hyd->LinkFlow[k]);
}
if (link->Type == PUMP && hyd->LinkStatus[k] >= OPEN &&
hyd->LinkSetting[k] > 0.0)
{
hyd->LinkStatus[k] = pumpstatus(pr, k, -dh);
}
// Check for status changes in non-fixed FCVs
if (link->Type == FCV && hyd->LinkSetting[k] != MISSING)
{
hyd->LinkStatus[k] = fcvstatus(pr, k, status, hyd->NodeHead[n1],
hyd->NodeHead[n2]);
}
// Check for flow into (out of) full (empty) tanks
if (n1 > net->Njuncs || n2 > net->Njuncs)

View File

@@ -7,7 +7,7 @@ Description: reads and interprets network data from an EPANET input file
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 02/03/2020
Last Updated: 02/07/2020
******************************************************************************
*/
@@ -429,9 +429,14 @@ int updatepumpparams(Project *pr, int pumpindex)
{
if (curve->Y[m] >= curve->Y[m - 1]) return 227;
}
pump->Qmax = curve->X[npts - 1];
pump->Q0 = (curve->X[0] + pump->Qmax) / 2.0;
pump->Hmax = curve->Y[0];
pump->Q0 = (curve->X[0] + curve->X[npts-1]) / 2.0;
// Extend curve to find Hmax (at 0 flow) and Qmax (at 0 head)
b = (curve->Y[1] - curve->Y[0]) / (curve->X[1] - curve->X[0]);
pump->Hmax = curve->Y[0] + b * curve->X[0];
b = (curve->Y[npts-1] - curve->Y[npts-2]) /
(curve->X[npts-1] - curve->X[npts-2]);
pump->Qmax = curve->X[npts-1] - curve->Y[npts-1] / b;
}
// Compute shape factors & limits of power function curves