Fix refactoring error in hydcoeffs.c

This commit is contained in:
Lew Rossman
2024-07-02 20:19:45 -04:00
parent 5b2b88cee4
commit 6089b93a51
2 changed files with 42 additions and 35 deletions

View File

@@ -575,7 +575,7 @@ void demandcoeffs(Project *pr)
for (i = 1; i <= net->Njuncs; i++) for (i = 1; i <= net->Njuncs; i++)
{ {
// Skip junctions with non-positive demands // Skip junctions with non-positive demands
if (hyd->NodeDemand[i] <= 0.0) continue; if (hyd->FullDemand[i] <= 0.0) continue;
// Find head loss for demand outflow at node's elevation // Find head loss for demand outflow at node's elevation
demandheadloss(pr, i, dp, n, &hloss, &hgrad); demandheadloss(pr, i, dp, n, &hloss, &hgrad);

View File

@@ -16,7 +16,7 @@ leaky pipes:
Q = Co * L * (Ao + m * H) * sqrt(H) Q = Co * L * (Ao + m * H) * sqrt(H)
where Q = leak flow rate, Co = an orifice coefficient (= 0.6*sqrt(2g)), where Q = pipe leak flow rate, Co = an orifice coefficient (= 0.6*sqrt(2g)),
L = pipe length, Ao = initial area of leak per unit of pipe length, L = pipe length, Ao = initial area of leak per unit of pipe length,
m = change in leak area per unit of pressure head, and H = pressure head. m = change in leak area per unit of pressure head, and H = pressure head.
@@ -26,7 +26,7 @@ a pipe's end node using a pair of equivalent emitters as follows:
H = Cfa * Qfa^2 H = Cfa * Qfa^2
H = Cva * Qva^(2/3) H = Cva * Qva^(2/3)
where Qfa = fixed area leakage rate, Qva = variable area leakage rate, where Qfa = fixed area node leakage rate, Qva = variable area node leakage rate,
Cfa = 1 / SUM(Co*(L/2)*Ao)^2, Cva = 1 / SUM(Co*(L/2)*m)^2/3, and Cfa = 1 / SUM(Co*(L/2)*Ao)^2, Cva = 1 / SUM(Co*(L/2)*m)^2/3, and
SUM(x) is the summation of x over all pipes connected to the node. SUM(x) is the summation of x over all pipes connected to the node.
@@ -56,9 +56,9 @@ static void convert_pipe_to_node_leakage(Project *pr);
static void init_node_leakage(Project *pr); static void init_node_leakage(Project *pr);
static int leakage_headloss(Project* pr, int i, double *hfa, static int leakage_headloss(Project* pr, int i, double *hfa,
double *gfa, double *hva, double *gva); double *gfa, double *hva, double *gva);
static void eval_node_leakage(double RQtol, double q, double c, static void eval_leak_headloss(double RQtol, double q, double c,
double n, double *h, double *g); double n, double *hloss, double *hgrad);
static void add_lower_barrier(double q, double* h, double* g); static void add_lower_barrier(double q, double *hloss, double *hgrad);
int openleakage(Project *pr) int openleakage(Project *pr)
@@ -116,7 +116,7 @@ int create_leakage_objects(Project *pr)
/*------------------------------------------------------------- /*-------------------------------------------------------------
** Input: none ** Input: none
** Output: returns an error code ** Output: returns an error code
** Purpose: allocates an array of Leakage objects. ** Purpose: allocates an array of node leakage objects.
**------------------------------------------------------------- **-------------------------------------------------------------
*/ */
{ {
@@ -153,9 +153,11 @@ void convert_pipe_to_node_leakage(Project *pr)
Slink *link; Slink *link;
Snode *node1; Snode *node1;
Snode *node2; Snode *node2;
// Orifice coeff. with conversion from sq. mm to sq. m
c_orif = 4.8149866 * 1.e-6;
// Examine each link // Examine each link
c_orif = 4.8149866 * 1.e-6;
for (i = 1; i <= net->Nlinks; i++) for (i = 1; i <= net->Nlinks; i++)
{ {
// Only pipes have leakage // Only pipes have leakage
@@ -371,8 +373,8 @@ double leakageflowchange(Project *pr, int i)
Network *net = &pr->network; Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul; Hydraul *hyd = &pr->hydraul;
double hfa, gfa, hva, gva, // same as defined in leakage_solvercoeffs() double hfa, gfa, hva, gva; // same as defined in leakage_solvercoeffs()
dh, dqfa, dqva; double h, dqfa, dqva; // pressure head, change in leakage flows
// Find the head loss and gradient of the inverted leakage // Find the head loss and gradient of the inverted leakage
// equation for both fixed and variable area leakage at the // equation for both fixed and variable area leakage at the
@@ -380,13 +382,13 @@ double leakageflowchange(Project *pr, int i)
if (!leakage_headloss(pr, i, &hfa, &gfa, &hva, &gva)) return 0.0; if (!leakage_headloss(pr, i, &hfa, &gfa, &hva, &gva)) return 0.0;
// Pressure head using latest head solution // Pressure head using latest head solution
dh = hyd->NodeHead[i] - net->Node[i].El; h = hyd->NodeHead[i] - net->Node[i].El;
// GGA flow update formula for fixed area leakage // GGA flow update formula for fixed area leakage
dqfa = 0.0; dqfa = 0.0;
if (gfa > 0.0) if (gfa > 0.0)
{ {
dqfa = (hfa - dh) / gfa * hyd->RelaxFactor; dqfa = (hfa - h) / gfa * hyd->RelaxFactor;
hyd->Leakage[i].qfa -= dqfa; hyd->Leakage[i].qfa -= dqfa;
} }
@@ -394,7 +396,7 @@ double leakageflowchange(Project *pr, int i)
dqva = 0.0; dqva = 0.0;
if (gva > 0.0) if (gva > 0.0)
{ {
dqva = (hva - dh) / gva * hyd->RelaxFactor; dqva = (hva - h) / gva * hyd->RelaxFactor;
hyd->Leakage[i].qva -= dqva; hyd->Leakage[i].qva -= dqva;
} }
@@ -415,10 +417,10 @@ int leakagehasconverged(Project *pr)
{ {
Network *net = &pr->network; Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul; Hydraul *hyd = &pr->hydraul;
int i; int i;
double h, qref, qtest; double h, qref, qtest;
const double ABSTOL = 0.0001; // 0.0001 cfs ~= 0.005 gpm ~= 0.2 lpm) const double QTOL = 0.0001; // 0.0001 cfs ~= 0.005 gpm ~= 0.2 lpm)
const double RELTOL = 0.001;
for (i = 1; i <= net->Njuncs; i++) for (i = 1; i <= net->Njuncs; i++)
{ {
@@ -439,7 +441,7 @@ int leakagehasconverged(Project *pr)
// Compare reference leakage to solution leakage // Compare reference leakage to solution leakage
qtest = hyd->Leakage[i].qfa + hyd->Leakage[i].qva; qtest = hyd->Leakage[i].qfa + hyd->Leakage[i].qva;
if (fabs(qref - qtest) > ABSTOL + RELTOL * qref) return FALSE; if (fabs(qref - qtest) > QTOL) return FALSE;
} }
return TRUE; return TRUE;
} }
@@ -460,6 +462,7 @@ int leakage_headloss(Project* pr, int i, double *hfa, double *gfa,
*/ */
{ {
Hydraul *hyd = &pr->hydraul; Hydraul *hyd = &pr->hydraul;
if (hyd->Leakage[i].cfa == 0.0 && hyd->Leakage[i].cva == 0.0) return FALSE; if (hyd->Leakage[i].cfa == 0.0 && hyd->Leakage[i].cva == 0.0) return FALSE;
if (hyd->Leakage[i].cfa == 0.0) if (hyd->Leakage[i].cfa == 0.0)
{ {
@@ -467,58 +470,62 @@ int leakage_headloss(Project* pr, int i, double *hfa, double *gfa,
*gfa = 0.0; *gfa = 0.0;
} }
else else
eval_node_leakage(hyd->RQtol, hyd->Leakage[i].qfa, hyd->Leakage[i].cfa, eval_leak_headloss(hyd->RQtol, hyd->Leakage[i].qfa, hyd->Leakage[i].cfa,
0.5, hfa, gfa); 0.5, hfa, gfa);
if (hyd->Leakage[i].cva == 0.0) if (hyd->Leakage[i].cva == 0.0)
{ {
*hva = 0.0; *hva = 0.0;
*gva = 0.0; *gva = 0.0;
} }
else else
eval_node_leakage(hyd->RQtol, hyd->Leakage[i].qva, hyd->Leakage[i].cva, eval_leak_headloss(hyd->RQtol, hyd->Leakage[i].qva, hyd->Leakage[i].cva,
1.5, hva, gva); 1.5, hva, gva);
return TRUE; return TRUE;
} }
void eval_node_leakage(double RQtol, double q, double c, double n, void eval_leak_headloss(double RQtol, double q, double c, double n,
double *h, double *g) double *hloss, double *hgrad)
/* /*
**-------------------------------------------------------------- **--------------------------------------------------------------
** Input: RQtol = low gradient tolerance (ft/cfs) ** Input: RQtol = low gradient tolerance (ft/cfs)
** q = leakage flow rate (cfs) ** q = leakage flow rate (cfs)
** c = leakage head loss coefficient ** c = leakage head loss coefficient
** n = leakage head loss exponent ** n = leakage head loss exponent
** Output: h = leakage head loss (ft) ** Output: hloss = leakage head loss (ft)
** g = gradient of leakage head loss (ft/cfs) ** hgrad = gradient of leakage head loss (ft/cfs)
** Purpose: evaluates inverted form of leakage equation to ** Purpose: evaluates inverted form of leakage equation to
** compute head loss and its gradient as a function ** compute head loss and its gradient as a function
** flow. ** flow.
**
** Note: Inverted leakage equation is:
** hloss = c * q ^ (1/n)
**-------------------------------------------------------------- **--------------------------------------------------------------
*/ */
{ {
n = 1.0 / n; n = 1.0 / n;
*g = n * c * pow(fabs(q), n - 1.0); *hgrad = n * c * pow(fabs(q), n - 1.0);
// Use linear head loss function for small gradient // Use linear head loss function for small gradient
if (*g < RQtol) /* if (*hgrad < RQtol)
{ {
*g = RQtol / n; *hgrad = RQtol / n;
*h = (*g) * q; *hloss = (*hgrad) * q;
} }
// Otherwise use normal leakage head loss function // Otherwise use normal leakage head loss function
else *h = (*g) * q / n; else */
*hloss = (*hgrad) * q / n;
// Prevent leakage from going negative // Prevent leakage from going negative
add_lower_barrier(q, h, g); add_lower_barrier(q, hloss, hgrad);
} }
void add_lower_barrier(double q, double* h, double* g) void add_lower_barrier(double q, double* hloss, double* hgrad)
/* /*
**-------------------------------------------------------------------- **--------------------------------------------------------------------
** Input: q = current flow rate ** Input: q = current flow rate
** Output: h = head loss value ** Output: hloss = head loss value
** g = head loss gradient value ** hgrad = head loss gradient value
** Purpose: adds a head loss barrier to prevent flow from falling ** Purpose: adds a head loss barrier to prevent flow from falling
** below 0. ** below 0.
**-------------------------------------------------------------------- **--------------------------------------------------------------------
@@ -526,6 +533,6 @@ void add_lower_barrier(double q, double* h, double* g)
{ {
double a = 1.e9 * q; double a = 1.e9 * q;
double b = sqrt(a*a + 1.e-6); double b = sqrt(a*a + 1.e-6);
*h += (a - b) / 2.; *hloss += (a - b) / 2.;
*g += (1.e9 / 2.) * ( 1.0 - a / b); *hgrad += (1.e9 / 2.) * ( 1.0 - a / b);
} }