Code cleanup

1. Added a standard header to each code module and removed obsolete comments.
2. Re-named several of the sub-structs in the project struct and re-arranged some of their contents.
3. Re-named _defaultModel to _defaultProject.
4. Removed the need to call EN_createproject and EN_deleteproject when working with the default project.
5. Made X & Y coords. part of Snode properties instead of a separate struct.
6. Moved the non-API functions in epanet.c into a new module named project.c.
7. Re-factored the quality module so that it uses the same nodal adjacency lists as the hydraulics solver.
8. Re-factored the sparse matrix module (smatrix.c) to be more memory efficient.
9. Restricted line lengths to < 90 columns.
10. Grouped the placement of functions in EPANET2.H and EPANET.C by category.
This commit is contained in:
Lew Rossman
2018-11-27 14:22:06 -05:00
parent 2988800448
commit 9a540cc0f4
29 changed files with 15140 additions and 15461 deletions

View File

@@ -1,9 +1,14 @@
/*
*********************************************************************
HYDCOEFFS.C -- hydraulic coefficients for the EPANET Program
*******************************************************************
******************************************************************************
Project: OWA EPANET
Version: 2.2
Module: hydcoeffs.c
Description: computes coefficients for a hydraulic solution matrix
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 11/27/2018
******************************************************************************
*/
#include <stdio.h>
@@ -29,40 +34,44 @@ const double AA = -1.5634601348517065795e+00; // -2*.9*2/ln(10)
const double AB = 3.28895476345399058690e-03; // 5.74/(4000^.9)
const double AC = -5.14214965799093883760e-03; // AA*AB
// External functions
//void resistcoeff(EN_Project *pr, int k);
//void headlosscoeffs(EN_Project *pr);
//void matrixcoeffs(EN_Project *pr);
//void emitheadloss(EN_Project *pr, int i, double *hloss, double *dhdq);
//double demandflowchange(EN_Project *pr, int i, double dp, double n);
//void demandparams(EN_Project *pr, double *dp, double *n);
// Definitions of very small and very big coefficients
const double CSMALL = 1.e-6;
const double CBIG = 1.e8;
// Exported functions
//void resistcoeff(Project *, int );
//void headlosscoeffs(Project *);
//void matrixcoeffs(Project *);
//void emitheadloss(Project *, int, double *, double *);
//double demandflowchange(Project *, int, double, double);
//void demandparams(Project *, double *, double *);
// Local functions
static void linkcoeffs(EN_Project *pr);
static void nodecoeffs(EN_Project *pr);
static void valvecoeffs(EN_Project *pr);
static void emittercoeffs(EN_Project *pr);
static void demandcoeffs(EN_Project *pr);
static void linkcoeffs(Project *pr);
static void nodecoeffs(Project *pr);
static void valvecoeffs(Project *pr);
static void emittercoeffs(Project *pr);
static void demandcoeffs(Project *pr);
static void demandheadloss(double d, double dfull, double dp,
double n, double *hloss, double *hgrad);
static void pipecoeff(EN_Project *pr, int k);
static void DWpipecoeff(EN_Project *pr, int k);
static void pipecoeff(Project *pr, int k);
static void DWpipecoeff(Project *pr, int k);
static double frictionFactor(double q, double e, double s, double *dfdq);
static void pumpcoeff(EN_Project *pr, int k);
static void curvecoeff(EN_Project *pr, int i, double q, double *h0, double *r);
static void pumpcoeff(Project *pr, int k);
static void curvecoeff(Project *pr, int i, double q, double *h0, double *r);
static void valvecoeff(EN_Project *pr, int k);
static void gpvcoeff(EN_Project *pr, int k);
static void pbvcoeff(EN_Project *pr, int k);
static void tcvcoeff(EN_Project *pr, int k);
static void prvcoeff(EN_Project *pr, int k, int n1, int n2);
static void psvcoeff(EN_Project *pr, int k, int n1, int n2);
static void fcvcoeff(EN_Project *pr, int k, int n1, int n2);
static void valvecoeff(Project *pr, int k);
static void gpvcoeff(Project *pr, int k);
static void pbvcoeff(Project *pr, int k);
static void tcvcoeff(Project *pr, int k);
static void prvcoeff(Project *pr, int k, int n1, int n2);
static void psvcoeff(Project *pr, int k, int n1, int n2);
static void fcvcoeff(Project *pr, int k, int n1, int n2);
void resistcoeff(EN_Project *pr, int k)
void resistcoeff(Project *pr, int k)
/*
**--------------------------------------------------------------------
** Input: k = link index
@@ -71,10 +80,10 @@ void resistcoeff(EN_Project *pr, int k)
**--------------------------------------------------------------------
*/
{
double e, d, L;
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
EN_Network *net = &pr->network;
hydraulics_t *hyd = &pr->hydraulics;
double e, d, L;
Slink *link = &net->Link[k];
link->Qa = 0.0;
@@ -121,7 +130,7 @@ void resistcoeff(EN_Project *pr, int k)
}
void headlosscoeffs(EN_Project *pr)
void headlosscoeffs(Project *pr)
/*
**--------------------------------------------------------------
** Input: none
@@ -131,9 +140,10 @@ void headlosscoeffs(EN_Project *pr)
**--------------------------------------------------------------
*/
{
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
int k;
EN_Network *net = &pr->network;
hydraulics_t *hyd = &pr->hydraulics;
for (k = 1; k <= net->Nlinks; k++)
{
@@ -159,13 +169,13 @@ void headlosscoeffs(EN_Project *pr)
case PRV:
case PSV:
if (hyd->LinkSetting[k] == MISSING) valvecoeff(pr, k);
else hyd->solver.P[k] = 0.0;
else hyd->P[k] = 0.0;
}
}
}
void matrixcoeffs(EN_Project *pr)
void matrixcoeffs(Project *pr)
/*
**--------------------------------------------------------------
** Input: none
@@ -174,16 +184,16 @@ void matrixcoeffs(EN_Project *pr)
**--------------------------------------------------------------
*/
{
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
EN_Network *net = &pr->network;
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
// Reset values of all diagonal coeffs. (Aii), off-diagonal
// coeffs. (Aij), r.h.s. coeffs. (F) and node flow balance (X_tmp)
memset(sol->Aii, 0, (net->Nnodes + 1) * sizeof(double));
memset(sol->Aij, 0, (hyd->Ncoeffs + 1) * sizeof(double));
memset(sol->F, 0, (net->Nnodes + 1) * sizeof(double));
memset(hyd->X_tmp, 0, (net->Nnodes + 1) * sizeof(double));
// coeffs. (Aij), r.h.s. coeffs. (F) and node excess flow (Xflow)
memset(sm->Aii, 0, (net->Nnodes + 1) * sizeof(double));
memset(sm->Aij, 0, (sm->Ncoeffs + 1) * sizeof(double));
memset(sm->F, 0, (net->Nnodes + 1) * sizeof(double));
memset(hyd->Xflow, 0, (net->Nnodes + 1) * sizeof(double));
// Compute matrix coeffs. from links, emitters, and nodal demands
linkcoeffs(pr);
@@ -199,7 +209,7 @@ void matrixcoeffs(EN_Project *pr)
}
void linkcoeffs(EN_Project *pr)
void linkcoeffs(Project *pr)
/*
**--------------------------------------------------------------
** Input: none
@@ -209,80 +219,81 @@ void linkcoeffs(EN_Project *pr)
**--------------------------------------------------------------
*/
{
int k, n1, n2;
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
EN_Network *net = &pr->network;
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
int k, n1, n2;
Slink *link;
// Examine each link of network
for (k = 1; k <= net->Nlinks; k++)
{
if (sol->P[k] == 0.0) continue;
if (hyd->P[k] == 0.0) continue;
link = &net->Link[k];
n1 = link->N1; // Start node of link
n2 = link->N2; // End node of link
// Update nodal flow balance (X_tmp)
// Update nodal flow excess (Xflow)
// (Flow out of node is (-), flow into node is (+))
hyd->X_tmp[n1] -= hyd->LinkFlows[k];
hyd->X_tmp[n2] += hyd->LinkFlows[k];
hyd->Xflow[n1] -= hyd->LinkFlow[k];
hyd->Xflow[n2] += hyd->LinkFlow[k];
// Add to off-diagonal coeff. of linear system matrix
sol->Aij[sol->Ndx[k]] -= sol->P[k];
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
// Update linear system coeffs. associated with start node n1
// ... node n1 is junction
if (n1 <= net->Njuncs)
{
sol->Aii[sol->Row[n1]] += sol->P[k]; // Diagonal coeff.
sol->F[sol->Row[n1]] += sol->Y[k]; // RHS coeff.
sm->Aii[sm->Row[n1]] += hyd->P[k]; // Diagonal coeff.
sm->F[sm->Row[n1]] += hyd->Y[k]; // RHS coeff.
}
// ... node n1 is a tank/reservoir
else sol->F[sol->Row[n2]] += (sol->P[k] * hyd->NodeHead[n1]);
else sm->F[sm->Row[n2]] += (hyd->P[k] * hyd->NodeHead[n1]);
// Update linear system coeffs. associated with end node n2
// ... node n2 is junction
if (n2 <= net->Njuncs)
{
sol->Aii[sol->Row[n2]] += sol->P[k]; // Diagonal coeff.
sol->F[sol->Row[n2]] -= sol->Y[k]; // RHS coeff.
sm->Aii[sm->Row[n2]] += hyd->P[k]; // Diagonal coeff.
sm->F[sm->Row[n2]] -= hyd->Y[k]; // RHS coeff.
}
// ... node n2 is a tank/reservoir
else sol->F[sol->Row[n1]] += (sol->P[k] * hyd->NodeHead[n2]);
else sm->F[sm->Row[n1]] += (hyd->P[k] * hyd->NodeHead[n2]);
}
}
void nodecoeffs(EN_Project *pr)
void nodecoeffs(Project *pr)
/*
**----------------------------------------------------------------
** Input: none
** Output: none
** Purpose: completes calculation of nodal flow balance array
** (X_tmp) & r.h.s. (F) of linearized hydraulic eqns.
** (Xflow) & r.h.s. (F) of linearized hydraulic eqns.
**----------------------------------------------------------------
*/
{
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
int i;
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
EN_Network *net = &pr->network;
// For junction nodes, subtract demand flow from net
// flow balance & add flow balance to RHS array F
// flow excess & add flow excess to RHS array F
for (i = 1; i <= net->Njuncs; i++)
{
hyd->X_tmp[i] -= hyd->DemandFlows[i];
sol->F[sol->Row[i]] += hyd->X_tmp[i];
hyd->Xflow[i] -= hyd->DemandFlow[i];
sm->F[sm->Row[i]] += hyd->Xflow[i];
}
}
void valvecoeffs(EN_Project *pr)
void valvecoeffs(Project *pr)
/*
**--------------------------------------------------------------
** Input: none
@@ -293,10 +304,10 @@ void valvecoeffs(EN_Project *pr)
**--------------------------------------------------------------
*/
{
int i, k, n1, n2;
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
hydraulics_t *hyd = &pr->hydraulics;
EN_Network *net = &pr->network;
int i, k, n1, n2;
Slink *link;
Svalve *valve;
@@ -333,7 +344,7 @@ void valvecoeffs(EN_Project *pr)
}
void emittercoeffs(EN_Project *pr)
void emittercoeffs(Project *pr)
/*
**--------------------------------------------------------------
** Input: none
@@ -348,13 +359,13 @@ void emittercoeffs(EN_Project *pr)
**--------------------------------------------------------------
*/
{
int i, row;
double hloss, hgrad;
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
EN_Network *net = &pr->network;
Snode *node;
int i, row;
double hloss, hgrad;
Snode *node;
for (i = 1; i <= net->Njuncs; i++)
{
@@ -366,19 +377,19 @@ void emittercoeffs(EN_Project *pr)
emitheadloss(pr, i, &hloss, &hgrad);
// Row of solution matrix
row = sol->Row[i];
row = sm->Row[i];
// Addition to matrix diagonal & r.h.s
sol->Aii[row] += 1.0 / hgrad;
sol->F[row] += (hloss + node->El) / hgrad;
sm->Aii[row] += 1.0 / hgrad;
sm->F[row] += (hloss + node->El) / hgrad;
// Update to node flow balance
hyd->X_tmp[i] -= hyd->EmitterFlows[i];
// Update to node flow excess
hyd->Xflow[i] -= hyd->EmitterFlow[i];
}
}
void emitheadloss(EN_Project *pr, int i, double *hloss, double *hgrad)
void emitheadloss(Project *pr, int i, double *hloss, double *hgrad)
/*
**-------------------------------------------------------------
** Input: i = node index
@@ -388,10 +399,11 @@ void emitheadloss(EN_Project *pr, int i, double *hloss, double *hgrad)
**-------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
double ke;
double q;
double qa;
hydraulics_t *hyd = &pr->hydraulics;
// Set adjusted emitter coeff.
ke = MAX(CSMALL, pr->network.Node[i].Ke);
@@ -400,7 +412,7 @@ void emitheadloss(EN_Project *pr, int i, double *hloss, double *hgrad)
qa = pow(hyd->RQtol / ke / hyd->Qexp, 1.0 / (hyd->Qexp - 1.0));
// Use linear head loss relation for small flow
q = hyd->EmitterFlows[i];
q = hyd->EmitterFlow[i];
if (fabs(q) <= qa)
{
*hgrad = hyd->RQtol;
@@ -416,7 +428,7 @@ void emitheadloss(EN_Project *pr, int i, double *hloss, double *hgrad)
}
void demandparams(EN_Project *pr, double *dp, double *n)
void demandparams(Project *pr, double *dp, double *n)
/*
**--------------------------------------------------------------
** Input: none
@@ -427,7 +439,7 @@ void demandparams(EN_Project *pr, double *dp, double *n)
**--------------------------------------------------------------
*/
{
hydraulics_t *hyd = &pr->hydraulics;
Hydraul *hyd = &pr->hydraul;
// If required pressure equals minimum pressure, use a linear demand
// curve with a 0.01 PSI pressure range to approximate an all or
@@ -447,7 +459,7 @@ void demandparams(EN_Project *pr, double *dp, double *n)
}
void demandcoeffs(EN_Project *pr)
void demandcoeffs(Project *pr)
/*
**--------------------------------------------------------------
** Input: none
@@ -462,16 +474,16 @@ void demandcoeffs(EN_Project *pr)
**--------------------------------------------------------------
*/
{
Network *net = &pr->network;
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
int i, row;
double dp, // pressure range over which demand can vary (ft)
n, // exponent in head loss v. demand function
hloss, // head loss in supplying demand (ft)
hgrad; // gradient of demand head loss (ft/cfs)
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
EN_Network *net = &pr->network;
// Get demand function parameters
if (hyd->DemandModel == DDA) return;
demandparams(pr, &dp, &n);
@@ -483,18 +495,18 @@ void demandcoeffs(EN_Project *pr)
if (hyd->NodeDemand[i] <= 0.0) continue;
// Find head loss for demand outflow at node's elevation
demandheadloss(hyd->DemandFlows[i], hyd->NodeDemand[i], dp, n,
demandheadloss(hyd->DemandFlow[i], hyd->NodeDemand[i], dp, n,
&hloss, &hgrad);
// Update row of solution matrix A & its r.h.s. F
row = sol->Row[i];
sol->Aii[row] += 1.0 / hgrad;
sol->F[row] += (hloss + net->Node[i].El + hyd->Pmin) / hgrad;
row = sm->Row[i];
sm->Aii[row] += 1.0 / hgrad;
sm->F[row] += (hloss + net->Node[i].El + hyd->Pmin) / hgrad;
}
}
double demandflowchange(EN_Project *pr, int i, double dp, double n)
double demandflowchange(Project *pr, int i, double dp, double n)
/*
**--------------------------------------------------------------
** Input: i = node index
@@ -506,16 +518,17 @@ double demandflowchange(EN_Project *pr, int i, double dp, double n)
**--------------------------------------------------------------
*/
{
double hloss, hgrad;
hydraulics_t *hyd = &pr->hydraulics;
Hydraul *hyd = &pr->hydraul;
demandheadloss(hyd->DemandFlows[i], hyd->NodeDemand[i], dp, n, &hloss, &hgrad);
double hloss, hgrad;
demandheadloss(hyd->DemandFlow[i], hyd->NodeDemand[i], dp, n, &hloss, &hgrad);
return (hloss - hyd->NodeHead[i] + pr->network.Node[i].El + hyd->Pmin) / hgrad;
}
void demandheadloss(double d, double dfull, double dp, double n,
double *hloss, double *hgrad)
double *hloss, double *hgrad)
/*
**--------------------------------------------------------------
** Input: d = actual junction demand (cfs)
@@ -563,7 +576,7 @@ void demandheadloss(double d, double dfull, double dp, double n,
}
void pipecoeff(EN_Project *pr, int k)
void pipecoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -575,20 +588,19 @@ void pipecoeff(EN_Project *pr, int k)
**--------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
double hloss, // Head loss
hgrad, // Head loss gradient
ml, // Minor loss coeff.
q, // Abs. value of flow
r; // Resistance coeff.
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
// For closed pipe use headloss formula: hloss = CBIG*q
if (hyd->LinkStatus[k] <= CLOSED)
{
sol->P[k] = 1.0 / CBIG;
sol->Y[k] = hyd->LinkFlows[k];
hyd->P[k] = 1.0 / CBIG;
hyd->Y[k] = hyd->LinkFlow[k];
return;
}
@@ -599,7 +611,7 @@ void pipecoeff(EN_Project *pr, int k)
return;
}
q = ABS(hyd->LinkFlows[k]);
q = ABS(hyd->LinkFlow[k]);
ml = pr->network.Link[k].Km;
r = pr->network.Link[k].R;
@@ -625,15 +637,15 @@ void pipecoeff(EN_Project *pr, int k)
}
// Adjust head loss sign for flow direction
hloss *= SGN(hyd->LinkFlows[k]);
hloss *= SGN(hyd->LinkFlow[k]);
// P and Y coeffs.
sol->P[k] = 1.0 / hgrad;
sol->Y[k] = hloss / hgrad;
hyd->P[k] = 1.0 / hgrad;
hyd->Y[k] = hloss / hgrad;
}
void DWpipecoeff(EN_Project *pr, int k)
void DWpipecoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -643,16 +655,14 @@ void DWpipecoeff(EN_Project *pr, int k)
**--------------------------------------------------------------
*/
{
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
Slink *link = &pr->network.Link[k];
Hydraul *hyd = &pr->hydraul;
Slink *link = &pr->network.Link[k];
double q = ABS(hyd->LinkFlows[k]);
double q = ABS(hyd->LinkFlow[k]);
double r = link->R; // Resistance coeff.
double ml = link->Km; // Minor loss coeff.
double e = link->Kc / link->Diam; // Relative roughness
double s = hyd->Viscos * link->Diam; // Viscosity / diameter
double hloss, hgrad, f, dfdq, r1;
// Compute head loss and its derivative
@@ -660,7 +670,7 @@ void DWpipecoeff(EN_Project *pr, int k)
if (q <= A2 * s)
{
r = 16.0 * PI * s * r;
hloss = hyd->LinkFlows[k] * (r + ml * q);
hloss = hyd->LinkFlow[k] * (r + ml * q);
hgrad = r + 2.0 * ml * q;
}
@@ -670,13 +680,13 @@ void DWpipecoeff(EN_Project *pr, int k)
dfdq = 0.0;
f = frictionFactor(q, e, s, &dfdq);
r1 = f * r + ml;
hloss = r1 * q * hyd->LinkFlows[k];
hloss = r1 * q * hyd->LinkFlow[k];
hgrad = (2.0 * r1 * q) + (dfdq * r * q * q);
}
// Compute P and Y coefficients
sol->P[k] = 1.0 / hgrad;
sol->Y[k] = hloss / hgrad;
hyd->P[k] = 1.0 / hgrad;
hyd->Y[k] = hloss / hgrad;
}
@@ -730,7 +740,7 @@ double frictionFactor(double q, double e, double s, double *dfdq)
}
void pumpcoeff(EN_Project *pr, int k)
void pumpcoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -739,6 +749,8 @@ void pumpcoeff(EN_Project *pr, int k)
**--------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
int p; // Pump index
double h0, // Shutoff head
q, // Abs. value of flow
@@ -748,22 +760,19 @@ void pumpcoeff(EN_Project *pr, int k)
qa, // Flow limit for linear head loss
hloss, // Head loss across pump
hgrad; // Head loss gradient
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
Spump *pump;
Spump *pump;
// Use high resistance pipe if pump closed or cannot deliver head
setting = hyd->LinkSetting[k];
if (hyd->LinkStatus[k] <= CLOSED || setting == 0.0)
{
sol->P[k] = 1.0 / CBIG;
sol->Y[k] = hyd->LinkFlows[k];
hyd->P[k] = 1.0 / CBIG;
hyd->Y[k] = hyd->LinkFlow[k];
return;
}
// Obtain reference to pump object & its speed setting
q = ABS(hyd->LinkFlows[k]);
q = ABS(hyd->LinkFlow[k]);
p = findpump(&pr->network, k);
pump = &pr->network.Pump[p];
@@ -783,7 +792,7 @@ void pumpcoeff(EN_Project *pr, int k)
// Compute head loss and its gradient
hgrad = pump->R * setting ;
hloss = pump->H0 * SQR(setting) + hgrad * hyd->LinkFlows[k];
hloss = pump->H0 * SQR(setting) + hgrad * hyd->LinkFlow[k];
}
else
{
@@ -798,23 +807,23 @@ void pumpcoeff(EN_Project *pr, int k)
if (q <= qa)
{
hgrad = hyd->RQtol;
hloss = h0 + hgrad * hyd->LinkFlows[k];
hloss = h0 + hgrad * hyd->LinkFlow[k];
}
// ... use original pump curve for normal flows
else
{
hgrad = n * r * pow(q, n - 1.0);
hloss = h0 + hgrad * hyd->LinkFlows[k] / n;
hloss = h0 + hgrad * hyd->LinkFlow[k] / n;
}
}
// P and Y coeffs.
sol->P[k] = 1.0 / hgrad;
sol->Y[k] = hloss / hgrad;
hyd->P[k] = 1.0 / hgrad;
hyd->Y[k] = hloss / hgrad;
}
void curvecoeff(EN_Project *pr, int i, double q, double *h0, double *r)
void curvecoeff(Project *pr, int i, double q, double *h0, double *r)
/*
**-------------------------------------------------------------------
** Input: i = curve index
@@ -854,7 +863,7 @@ void curvecoeff(EN_Project *pr, int i, double q, double *h0, double *r)
}
void gpvcoeff(EN_Project *pr, int k)
void gpvcoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -868,8 +877,7 @@ void gpvcoeff(EN_Project *pr, int k)
r, // Slope of head loss curve segment
q; // Abs. value of flow
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
Hydraul *hyd = &pr->hydraul;
// Treat as a pipe if valve closed
if (hyd->LinkStatus[k] == CLOSED) valvecoeff(pr, k);
@@ -883,7 +891,7 @@ void gpvcoeff(EN_Project *pr, int k)
i = (int)ROUND(hyd->LinkSetting[k]);
// Adjusted flow rate
q = ABS(hyd->LinkFlows[k]);
q = ABS(hyd->LinkFlow[k]);
q = MAX(q, TINY);
// Intercept and slope of curve segment containing q
@@ -891,13 +899,13 @@ void gpvcoeff(EN_Project *pr, int k)
r = MAX(r, TINY);
// Resulting P and Y coeffs.
sol->P[k] = 1.0 / r;
sol->Y[k] = (h0 / r + q) * SGN(hyd->LinkFlows[k]);
hyd->P[k] = 1.0 / r;
hyd->Y[k] = (h0 / r + q) * SGN(hyd->LinkFlow[k]);
}
}
void pbvcoeff(EN_Project *pr, int k)
void pbvcoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -906,8 +914,7 @@ void pbvcoeff(EN_Project *pr, int k)
**--------------------------------------------------------------
*/
{
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
Hydraul *hyd = &pr->hydraul;
Slink *link = &pr->network.Link[k];
// If valve fixed OPEN or CLOSED then treat as a pipe
@@ -920,21 +927,21 @@ void pbvcoeff(EN_Project *pr, int k)
else
{
// Treat as a pipe if minor loss > valve setting
if (link->Km * SQR(hyd->LinkFlows[k]) > hyd->LinkSetting[k])
if (link->Km * SQR(hyd->LinkFlow[k]) > hyd->LinkSetting[k])
{
valvecoeff(pr, k);
}
// Otherwise force headloss across valve to be equal to setting
else
{
sol->P[k] = CBIG;
sol->Y[k] = hyd->LinkSetting[k] * CBIG;
hyd->P[k] = CBIG;
hyd->Y[k] = hyd->LinkSetting[k] * CBIG;
}
}
}
void tcvcoeff(EN_Project *pr, int k)
void tcvcoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -944,7 +951,7 @@ void tcvcoeff(EN_Project *pr, int k)
*/
{
double km;
hydraulics_t *hyd = &pr->hydraulics;
Hydraul *hyd = &pr->hydraul;
Slink *link = &pr->network.Link[k];
// Save original loss coeff. for open valve
@@ -964,7 +971,7 @@ void tcvcoeff(EN_Project *pr, int k)
}
void prvcoeff(EN_Project *pr, int k, int n1, int n2)
void prvcoeff(Project *pr, int k, int n1, int n2)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -976,13 +983,14 @@ void prvcoeff(EN_Project *pr, int k, int n1, int n2)
**--------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
int i, j; // Rows of solution matrix
double hset; // Valve head setting
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
i = sol->Row[n1]; // Matrix rows of nodes
j = sol->Row[n2];
i = sm->Row[n1]; // Matrix rows of nodes
j = sm->Row[n2];
hset = pr->network.Node[n2].El +
hyd->LinkSetting[k]; // Valve setting
@@ -991,15 +999,15 @@ void prvcoeff(EN_Project *pr, int k, int n1, int n2)
// Set coeffs. to force head at downstream
// node equal to valve setting & force flow
// to equal to flow imbalance at downstream node.
// to equal to flow excess at downstream node.
sol->P[k] = 0.0;
sol->Y[k] = hyd->LinkFlows[k] + hyd->X_tmp[n2]; // Force flow balance
sol->F[j] += (hset * CBIG); // Force head = hset
sol->Aii[j] += CBIG; // at downstream node
if (hyd->X_tmp[n2] < 0.0)
hyd->P[k] = 0.0;
hyd->Y[k] = hyd->LinkFlow[k] + hyd->Xflow[n2]; // Force flow balance
sm->F[j] += (hset * CBIG); // Force head = hset
sm->Aii[j] += CBIG; // at downstream node
if (hyd->Xflow[n2] < 0.0)
{
sol->F[i] += hyd->X_tmp[n2];
sm->F[i] += hyd->Xflow[n2];
}
return;
}
@@ -1008,15 +1016,15 @@ void prvcoeff(EN_Project *pr, int k, int n1, int n2)
// compute matrix coeffs. using the valvecoeff() function.
valvecoeff(pr, k);
sol->Aij[sol->Ndx[k]] -= sol->P[k];
sol->Aii[i] += sol->P[k];
sol->Aii[j] += sol->P[k];
sol->F[i] += (sol->Y[k] - hyd->LinkFlows[k]);
sol->F[j] -= (sol->Y[k] - hyd->LinkFlows[k]);
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
sm->Aii[i] += hyd->P[k];
sm->Aii[j] += hyd->P[k];
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
}
void psvcoeff(EN_Project *pr, int k, int n1, int n2)
void psvcoeff(Project *pr, int k, int n1, int n2)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -1028,13 +1036,14 @@ void psvcoeff(EN_Project *pr, int k, int n1, int n2)
**--------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
int i, j; // Rows of solution matrix
double hset; // Valve head setting
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
i = sol->Row[n1]; // Matrix rows of nodes
j = sol->Row[n2];
i = sm->Row[n1]; // Matrix rows of nodes
j = sm->Row[n2];
hset = pr->network.Node[n1].El +
hyd->LinkSetting[k]; // Valve setting
@@ -1042,15 +1051,15 @@ void psvcoeff(EN_Project *pr, int k, int n1, int n2)
{
// Set coeffs. to force head at upstream
// node equal to valve setting & force flow
// equal to flow imbalance at upstream node.
// equal to flow excess at upstream node.
sol->P[k] = 0.0;
sol->Y[k] = hyd->LinkFlows[k] - hyd->X_tmp[n1]; // Force flow balance
sol->F[i] += (hset * CBIG); // Force head = hset
sol->Aii[i] += CBIG; // at upstream node
if (hyd->X_tmp[n1] > 0.0)
hyd->P[k] = 0.0;
hyd->Y[k] = hyd->LinkFlow[k] - hyd->Xflow[n1]; // Force flow balance
sm->F[i] += (hset * CBIG); // Force head = hset
sm->Aii[i] += CBIG; // at upstream node
if (hyd->Xflow[n1] > 0.0)
{
sol->F[j] += hyd->X_tmp[n1];
sm->F[j] += hyd->Xflow[n1];
}
return;
}
@@ -1059,15 +1068,15 @@ void psvcoeff(EN_Project *pr, int k, int n1, int n2)
// compute matrix coeffs. using the valvecoeff() function.
valvecoeff(pr, k);
sol->Aij[sol->Ndx[k]] -= sol->P[k];
sol->Aii[i] += sol->P[k];
sol->Aii[j] += sol->P[k];
sol->F[i] += (sol->Y[k] - hyd->LinkFlows[k]);
sol->F[j] -= (sol->Y[k] - hyd->LinkFlows[k]);
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
sm->Aii[i] += hyd->P[k];
sm->Aii[j] += hyd->P[k];
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
}
void fcvcoeff(EN_Project *pr, int k, int n1, int n2)
void fcvcoeff(Project *pr, int k, int n1, int n2)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -1079,14 +1088,15 @@ void fcvcoeff(EN_Project *pr, int k, int n1, int n2)
**--------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
Smatrix *sm = &hyd->smatrix;
int i, j; // Rows in solution matrix
double q; // Valve flow setting
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
q = hyd->LinkSetting[k];
i = hyd->solver.Row[n1];
j = hyd->solver.Row[n2];
i = sm->Row[n1];
j = sm->Row[n2];
// If valve active, break network at valve and treat
// flow setting as external demand at upstream node
@@ -1094,15 +1104,15 @@ void fcvcoeff(EN_Project *pr, int k, int n1, int n2)
if (hyd->LinkStatus[k] == ACTIVE)
{
hyd->X_tmp[n1] -= q;
sol->F[i] -= q;
hyd->X_tmp[n2] += q;
sol->F[j] += q;
sol->P[k] = 1.0 / CBIG;
sol->Aij[sol->Ndx[k]] -= sol->P[k];
sol->Aii[i] += sol->P[k];
sol->Aii[j] += sol->P[k];
sol->Y[k] = hyd->LinkFlows[k] - q;
hyd->Xflow[n1] -= q;
hyd->Xflow[n2] += q;
hyd->Y[k] = hyd->LinkFlow[k] - q;
sm->F[i] -= q;
sm->F[j] += q;
hyd->P[k] = 1.0 / CBIG;
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
sm->Aii[i] += hyd->P[k];
sm->Aii[j] += hyd->P[k];
}
// Otherwise treat valve as an open pipe
@@ -1110,16 +1120,16 @@ void fcvcoeff(EN_Project *pr, int k, int n1, int n2)
else
{
valvecoeff(pr, k);
sol->Aij[sol->Ndx[k]] -= sol->P[k];
sol->Aii[i] += sol->P[k];
sol->Aii[j] += sol->P[k];
sol->F[i] += (sol->Y[k] - hyd->LinkFlows[k]);
sol->F[j] -= (sol->Y[k] - hyd->LinkFlows[k]);
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
sm->Aii[i] += hyd->P[k];
sm->Aii[j] += hyd->P[k];
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
}
}
void valvecoeff(EN_Project *pr, int k)
void valvecoeff(Project *pr, int k)
/*
**--------------------------------------------------------------
** Input: k = link index
@@ -1129,20 +1139,18 @@ void valvecoeff(EN_Project *pr, int k)
**--------------------------------------------------------------
*/
{
Hydraul *hyd = &pr->hydraul;
Slink *link = &pr->network.Link[k];
double flow, q, y, qa, hgrad;
EN_Network *net = &pr->network;
hydraulics_t *hyd = &pr->hydraulics;
solver_t *sol = &hyd->solver;
Slink *link = &net->Link[k];
flow = hyd->LinkFlows[k];
flow = hyd->LinkFlow[k];
// Valve is closed. Use a very small matrix coeff.
if (hyd->LinkStatus[k] <= CLOSED)
{
sol->P[k] = 1.0 / CBIG;
sol->Y[k] = flow;
hyd->P[k] = 1.0 / CBIG;
hyd->Y[k] = flow;
return;
}
@@ -1164,15 +1172,15 @@ void valvecoeff(EN_Project *pr, int k)
}
// P and Y coeffs.
sol->P[k] = 1.0 / hgrad;
sol->Y[k] = y;
hyd->P[k] = 1.0 / hgrad;
hyd->Y[k] = y;
}
// If no minor loss coeff. specified use a
// low resistance linear head loss relation
else
{
sol->P[k] = 1.0 / CSMALL;
sol->Y[k] = flow;
hyd->P[k] = 1.0 / CSMALL;
hyd->Y[k] = flow;
}
}