/* ******************************************************************* SMATRIX.C -- Sparse matrix routines for EPANET program. VERSION: 2.00 DATE: 5/8/00 AUTHOR: L. Rossman US EPA - NRMRL This module contains the sparse matrix routines used to solve a network's hydraulic equations. The entry points into this module are: createsparse() -- called from openhyd() in HYDRAUL.C freesparse() -- called from closehyd() in HYDRAUL.C linsolve() -- called from netsolve() in HYDRAUL.C createsparse() does the following: 1. for each node, builds an adjacency list that identifies all links connected to the node (see buildlists()) 2. re-orders the network's nodes to minimize the number of non-zero entries in the hydraulic solution matrix (see reorder()) 3. symbolically factorizes the solution matrix (see factorize()) 4. converts the adjacency lists into a compact scheme for storing the non-zero coeffs. in the lower diagonal portion of the solution matrix (see storesparse()) freesparse() frees the memory used for the sparse matrix. linsolve() solves the linearized system of hydraulic equations. ******************************************************************** */ #include #include #ifndef __APPLE__ #include #else #include #endif #include #include #include #include "text.h" #include "types.h" #include "funcs.h" // The multiple minimum degree re-ordering routine (see genmmd.c) extern int genmmd(int *neqns, int *xadj, int *adjncy, int *invp, int *perm, int *delta, int *dhead, int *qsize, int *llist, int *marker, int *maxint, int *nofsub); // Local functions static int allocsparse(EN_Project *pr); static int buildlists(EN_Project *pr, int); static int paralink(EN_Project *pr, int, int, int); static void xparalinks(EN_Project *pr); static void freelists(EN_Project *pr); static void countdegree(EN_Project *pr); static int reordernodes(EN_Project *pr); static int factorize(EN_Project *pr); static int growlist(EN_Project *pr, int); static int newlink(EN_Project *pr, Padjlist); static int linked(EN_Network *net, int, int); static int addlink(EN_Network *net, int, int, int); static int storesparse(EN_Project *pr, int); static int sortsparse(EN_Project *pr, int); static void transpose(int, int *, int *, int *, int *, int *, int *, int *); /************************************************************************* * Timer macros **************************************************************************/ //#define cleartimer(tmr) (tmr = 0.0) //#define starttimer(tmr) (tmr -= ((double) clock()/CLOCKS_PER_SEC)); //#define stoptimer(tmr) (tmr += ((double) clock()/CLOCKS_PER_SEC)); //#define gettimer(tmr) (tmr) /************************************************************************* * The following data type implements a timer **************************************************************************/ // typedef double timer; // timer SmatrixTimer; int createsparse(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns error code ** Purpose: creates sparse representation of coeff. matrix **-------------------------------------------------------------- */ { int errcode = 0; EN_Network *net = &pr->network; hydraulics_t *hyd = &pr->hydraulics; solver_t *solver = &pr->hydraulics.solver; // cleartimer(SmatrixTimer); // starttimer(SmatrixTimer); /* Allocate data structures */ ERRCODE(allocsparse(pr)); if (errcode) { return(errcode); } /* Build node-link adjacency lists with parallel links removed. */ solver->Degree = (int *) calloc(net->Nnodes+1, sizeof(int)); ERRCODE(MEMCHECK(solver->Degree)); ERRCODE(buildlists(pr, TRUE)); if (!errcode) { xparalinks(pr); // Remove parallel links countdegree(pr); // Find degree of each junction } // (= # of adjacent links) // Re-order nodes to minimize number of non-zero coeffs. // in factorized solution matrix. hyd->Ncoeffs = net->Nlinks; ERRCODE(reordernodes(pr)); // Factorize solution matrix by updating adjacency lists // with non-zero connections due to fill-ins. ERRCODE(factorize(pr)); // Allocate memory for sparse storage of positions of non-zero // coeffs. and store these positions in vector NZSUB. ERRCODE(storesparse(pr, net->Njuncs)); // Free memory used for adjacency lists and sort // row indexes in NZSUB to optimize linsolve(). if (!errcode) { freelists(pr); } ERRCODE(sortsparse(pr, net->Njuncs)); // Re-build adjacency lists without removing parallel // links for use in future connectivity checking. ERRCODE(buildlists(pr,FALSE)); // Free allocated memory free(solver->Degree); return(errcode); } /* End of createsparse */ int allocsparse(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns error code ** Purpose: allocates memory for indexing the solution matrix **-------------------------------------------------------------- */ { EN_Network *net = &pr->network; solver_t *solver = &pr->hydraulics.solver; int errcode = 0; net->Adjlist = (Padjlist *) calloc(net->Nnodes+1, sizeof(Padjlist)); solver->Order = (int *) calloc(net->Nnodes+1, sizeof(int)); solver->Row = (int *) calloc(net->Nnodes+1, sizeof(int)); solver->Ndx = (int *) calloc(net->Nlinks+1, sizeof(int)); ERRCODE(MEMCHECK(net->Adjlist)); ERRCODE(MEMCHECK(solver->Order)); ERRCODE(MEMCHECK(solver->Row)); ERRCODE(MEMCHECK(solver->Ndx)); return(errcode); } void freesparse(EN_Project *pr) /* **---------------------------------------------------------------- ** Input: None ** Output: None ** Purpose: Frees memory used for sparse matrix storage **---------------------------------------------------------------- */ { EN_Network *net = &pr->network; solver_t *solver = &pr->hydraulics.solver; // stoptimer(SmatrixTimer); // printf("\n"); // printf("\n Processing Time = %7.3f s", gettimer(SmatrixTimer)); // printf("\n"); freelists(pr); FREE(net->Adjlist); FREE(solver->Order); FREE(solver->Row); FREE(solver->Ndx); FREE(solver->XLNZ); FREE(solver->NZSUB); FREE(solver->LNZ); } /* End of freesparse */ int buildlists(EN_Project *pr, int paraflag) /* **-------------------------------------------------------------- ** Input: paraflag = TRUE if list marks parallel links ** Output: returns error code ** Purpose: builds linked list of links adjacent to each node **-------------------------------------------------------------- */ { int i,j,k; int pmark = 0; int errcode = 0; Padjlist alink; EN_Network *net = &pr->network; // For each link, update adjacency lists of its end nodes for (k=1; k <= net->Nlinks; k++) { i = net->Link[k].N1; j = net->Link[k].N2; if (paraflag) { pmark = paralink(pr, i, j, k); // Parallel link check } // Include link in start node i's list alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist)); if (alink == NULL) return(101); if (!pmark) alink->node = j; else alink->node = 0; // Parallel link marker alink->link = k; alink->next = net->Adjlist[i]; net->Adjlist[i] = alink; // Include link in end node j's list alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist)); if (alink == NULL) return(101); if (!pmark) alink->node = i; else alink->node = 0; // Parallel link marker alink->link = k; alink->next = net->Adjlist[j]; net->Adjlist[j] = alink; } return(errcode); } /* End of buildlists */ int paralink(EN_Project *pr, int i, int j, int k) /* **-------------------------------------------------------------- ** Input: i = index of start node of link ** j = index of end node of link ** k = link index ** Output: returns 1 if link k parallels another link, else 0 ** Purpose: checks for parallel links between nodes i and j ** **-------------------------------------------------------------- */ { Padjlist alink; for (alink = pr->network.Adjlist[i]; alink != NULL; alink = alink->next) { // Link || to k (same end nodes) if (alink->node == j) { // Assign Ndx entry to this link pr->hydraulics.solver.Ndx[k] = alink->link; return(1); } } // Ndx entry if link not parallel pr->hydraulics.solver.Ndx[k] = k; return(0); } /* End of paralink */ void xparalinks(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: none ** Purpose: removes parallel links from nodal adjacency lists **-------------------------------------------------------------- */ { int i; Padjlist alink, // Current item in adjacency list blink; // Previous item in adjacency list EN_Network *net = &pr->network; // Scan adjacency list of each node for (i=1; i <= net->Nnodes; i++) { alink = net->Adjlist[i]; // First item in list blink = NULL; while (alink != NULL) { if (alink->node == 0) // Parallel link marker found { if (blink == NULL) // This holds at start of list { net->Adjlist[i] = alink->next; free(alink); // Remove item from list alink = net->Adjlist[i]; } else // This holds for interior of list { blink->next = alink->next; free(alink); // Remove item from list alink = blink->next; } } else { blink = alink; // Move to next item in list alink = alink->next; } } } } /* End of xparalinks */ void freelists(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: none ** Purpose: frees memory used for nodal adjacency lists **-------------------------------------------------------------- */ { int i; Padjlist alink; EN_Network *net = &pr->network; for (i=0; i <= net->Nnodes; i++) { for (alink = net->Adjlist[i]; alink != NULL; alink = net->Adjlist[i]) { net->Adjlist[i] = alink->next; free(alink); } } } /* End of freelists */ void countdegree(EN_Project *pr) /* **---------------------------------------------------------------- ** Input: none ** Output: none ** Purpose: counts number of nodes directly connected to each node **---------------------------------------------------------------- */ { int i; Padjlist alink; EN_Network *net = &pr->network; memset(pr->hydraulics.solver.Degree, 0, (net->Nnodes+1) * sizeof(int)); // NOTE: For purposes of node re-ordering, Tanks (nodes with // indexes above Njuncs) have zero degree of adjacency. for (i=1; i <= net->Njuncs; i++) { for (alink = net->Adjlist[i]; alink != NULL; alink = alink->next) { if (alink->node > 0) { pr->hydraulics.solver.Degree[i]++; } } } } int reordernodes(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns 1 if successful, 0 if not ** Purpose: re-orders nodes to minimize # of non-zeros that ** will appear in factorized solution matrix **-------------------------------------------------------------- */ { int k, knode, m, njuncs, nlinks; int delta = -1; int nofsub = 0; int maxint = INT_MAX; //defined in limits.h int errcode; EN_Network *net = &pr->network; solver_t *solver = &pr->hydraulics.solver; Padjlist alink; // Local versions of node adjacency lists int *adjncy = NULL; int *xadj = NULL; // Work arrays int *dhead = NULL; int *qsize = NULL; int *llist = NULL; int *marker = NULL; // Default ordering for (k=1; k <= net->Nnodes; k++) { solver->Row[k] = k; solver->Order[k] = k; } njuncs = net->Njuncs; nlinks = net->Nlinks; // Allocate memory adjncy = (int *) calloc(2*nlinks+1, sizeof(int)); xadj = (int *) calloc(njuncs+2, sizeof(int)); dhead = (int *) calloc(njuncs+1, sizeof(int)); qsize = (int *) calloc(njuncs + 1, sizeof(int)); llist = (int *) calloc(njuncs + 1, sizeof(int)); marker = (int *) calloc(njuncs + 1, sizeof(int)); if (adjncy && xadj && dhead && qsize && llist && marker) { // Create local versions of node adjacency lists xadj[1] = 1; m = 1; for (k = 1; k <= njuncs; k++) { for (alink = net->Adjlist[k]; alink != NULL; alink = alink->next) { knode = alink->node; if (knode <= njuncs) { adjncy[m] = knode; m++; } } xadj[k+1] = m; } // Generate a multiple minimum degree node re-ordering genmmd(&njuncs, xadj, adjncy, solver->Row, solver->Order, &delta, dhead, qsize, llist, marker, &maxint, &nofsub); errcode = 0; } else errcode = 101; //insufficient memory // Free memory FREE(adjncy); FREE(xadj); FREE(dhead); FREE(qsize); FREE(llist); FREE(marker); return errcode; } /* End of reordernodes */ int factorize(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns error code ** Purpose: symbolically factorizes the solution matrix in ** terms of its adjacency lists **-------------------------------------------------------------- */ { int k, knode; int errcode = 0; EN_Network *net = &pr->network; solver_t *solver = &pr->hydraulics.solver; // Augment each junction's adjacency list to account for // new connections created when solution matrix is solved. // NOTE: Only junctions (indexes <= Njuncs) appear in solution matrix. for (k = 1; k <= net->Njuncs; k++) // Examine each junction { knode = solver->Order[k]; // Re-ordered index if (!growlist(pr, knode)) // Augment adjacency list { errcode = 101; break; } solver->Degree[knode] = 0; // In-activate node } return(errcode); } /* End of factorize */ int growlist(EN_Project *pr, int knode) /* **-------------------------------------------------------------- ** Input: knode = node index ** Output: returns 1 if successful, 0 if not ** Purpose: creates new entries in knode's adjacency list for ** all unlinked pairs of active nodes that are ** adjacent to knode **-------------------------------------------------------------- */ { int node; Padjlist alink; EN_Network *net = &pr->network; solver_t *solver = &pr->hydraulics.solver; // Iterate through all nodes connected to knode for (alink = net->Adjlist[knode]; alink != NULL; alink = alink -> next) { node = alink->node; // End node of connecting link if (solver->Degree[node] > 0) // End node is active { solver->Degree[node]--; // Reduce degree of adjacency if (!newlink(pr, alink)) { // Add to adjacency list return(0); } } } return(1); } /* End of growlist */ int newlink(EN_Project *pr, Padjlist alink) /* **-------------------------------------------------------------- ** Input: alink = element of node's adjacency list ** Output: returns 1 if successful, 0 if not ** Purpose: links end of current adjacent link to end nodes of ** all links that follow it on adjacency list **-------------------------------------------------------------- */ { int inode, jnode; Padjlist blink; EN_Network *net = &pr->network; hydraulics_t *hyd = &pr->hydraulics; solver_t *solver = &pr->hydraulics.solver; // Scan all entries in adjacency list that follow anode. inode = alink->node; // End node of connection to anode for (blink = alink->next; blink != NULL; blink = blink->next) { jnode = blink->node; // End node of next connection // If jnode still active, and inode not connected to jnode, // then add a new connection between inode and jnode. if (solver->Degree[jnode] > 0) // jnode still active { if (!linked(net, inode, jnode)) // inode not linked to jnode { // Since new connection represents a non-zero coeff. // in the solution matrix, update the coeff. count. hyd->Ncoeffs++; // Update adjacency lists for inode & jnode to // reflect the new connection. if (!addlink(net, inode, jnode, hyd->Ncoeffs)) return(0); if (!addlink(net, jnode, inode, hyd->Ncoeffs)) return(0); solver->Degree[inode]++; solver->Degree[jnode]++; } } } return(1); } /* End of newlink */ int linked(EN_Network *n, int i, int j) /* **-------------------------------------------------------------- ** Input: i = node index ** j = node index ** Output: returns 1 if nodes i and j are linked, 0 if not ** Purpose: checks if nodes i and j are already linked. **-------------------------------------------------------------- */ { Padjlist alink; for (alink = n->Adjlist[i]; alink != NULL; alink = alink->next) { if (alink->node == j) return(1); } return(0); } /* End of linked */ int addlink(EN_Network *net, int i, int j, int n) /* **-------------------------------------------------------------- ** Input: i = node index ** j = node index ** n = link index ** Output: returns 1 if successful, 0 if not ** Purpose: augments node i's adjacency list with node j **-------------------------------------------------------------- */ { Padjlist alink; alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist)); if (alink == NULL) return(0); alink->node = j; alink->link = n; alink->next = net->Adjlist[i]; net->Adjlist[i] = alink; return(1); } /* End of addlink */ int storesparse(EN_Project *pr, int n) /* **-------------------------------------------------------------- ** Input: n = number of rows in solution matrix ** Output: returns error code ** Purpose: stores row indexes of non-zeros of each column of ** lower triangular portion of factorized matrix **-------------------------------------------------------------- */ { Padjlist alink; int i, ii, j, k, l, m; int errcode = 0; EN_Network *net = &pr->network; hydraulics_t *hyd = &pr->hydraulics; solver_t *solver = &pr->hydraulics.solver; /* Allocate sparse matrix storage */ solver->XLNZ = (int *) calloc(n+2, sizeof(int)); solver->NZSUB = (int *) calloc(hyd->Ncoeffs+2, sizeof(int)); solver->LNZ = (int *) calloc(hyd->Ncoeffs+2, sizeof(int)); ERRCODE(MEMCHECK(solver->XLNZ)); ERRCODE(MEMCHECK(solver->NZSUB)); ERRCODE(MEMCHECK(solver->LNZ)); if (errcode) return(errcode); // Generate row index pointers for each column of matrix k = 0; solver->XLNZ[1] = 1; for (i=1; i<=n; i++) // column { m = 0; ii = solver->Order[i]; for (alink = net->Adjlist[ii]; alink != NULL; alink = alink->next) { j = solver->Row[alink->node]; // row l = alink->link; if (j > i && j <= n) { m++; k++; solver->NZSUB[k] = j; solver->LNZ[k] = l; } } solver->XLNZ[i+1] = solver->XLNZ[i] + m; } return(errcode); } /* End of storesparse */ int sortsparse(EN_Project *pr, int n) /* **-------------------------------------------------------------- ** Input: n = number of rows in solution matrix ** Output: returns eror code ** Purpose: puts row indexes in ascending order in NZSUB **-------------------------------------------------------------- */ { int i, k; int *xlnzt, *nzsubt, *lnzt, *nzt; int errcode = 0; hydraulics_t *hyd = &pr->hydraulics; solver_t *solver = &pr->hydraulics.solver; int *LNZ = solver->LNZ; int *XLNZ = solver->XLNZ; int *NZSUB = solver->NZSUB; xlnzt = (int *) calloc(n+2, sizeof(int)); nzsubt = (int *) calloc(hyd->Ncoeffs+2, sizeof(int)); lnzt = (int *) calloc(hyd->Ncoeffs+2, sizeof(int)); nzt = (int *) calloc(n+2, sizeof(int)); ERRCODE(MEMCHECK(xlnzt)); ERRCODE(MEMCHECK(nzsubt)); ERRCODE(MEMCHECK(lnzt)); ERRCODE(MEMCHECK(nzt)); if (!errcode) { // Count # non-zeros in each row for (i=1; i<=n; i++) nzt[i] = 0; for (i=1; i<=n; i++) { for (k = XLNZ[i]; k < XLNZ[i+1]; k++) nzt[NZSUB[k]]++; } xlnzt[1] = 1; for (i=1; i<=n; i++) xlnzt[i+1] = xlnzt[i] + nzt[i]; // Transpose matrix twice to order column indexes transpose(n, XLNZ, NZSUB, LNZ, xlnzt, nzsubt, lnzt, nzt); transpose(n, xlnzt, nzsubt, lnzt, XLNZ, NZSUB, LNZ, nzt); } // Reclaim memory FREE(xlnzt); FREE(nzsubt); FREE(lnzt); FREE(nzt); return(errcode); } /* End of sortsparse */ void transpose(int n, int *il, int *jl, int *xl, int *ilt, int *jlt, int *xlt, int *nzt) /* **--------------------------------------------------------------------- ** Input: n = matrix order ** il,jl,xl = sparse storage scheme for original matrix ** nzt = work array ** Output: ilt,jlt,xlt = sparse storage scheme for transposed matrix ** Purpose: Determines sparse storage scheme for transpose of a matrix **--------------------------------------------------------------------- */ { int i, j, k, kk; for (i=1; i<=n; i++) nzt[i] = 0; for (i=1; i<=n; i++) { for (k=il[i]; kF = solution values ** returns 0 if solution found, or index of ** equation causing system to be ill-conditioned ** Purpose: solves sparse symmetric system of linear ** equations using Cholesky factorization ** ** NOTE: This procedure assumes that the solution matrix has ** been symbolically factorized with the positions of ** the lower triangular, off-diagonal, non-zero coeffs. ** stored in the following integer arrays: ** XLNZ (start position of each column in NZSUB) ** NZSUB (row index of each non-zero in each column) ** LNZ (position of each NZSUB entry in Aij array) ** ** This procedure has been adapted from subroutines GSFCT and ** GSSLV in the book "Computer Solution of Large Sparse ** Positive Definite Systems" by A. George and J. W-H Liu ** (Prentice-Hall, 1981). **-------------------------------------------------------------- */ { solver_t *solver = &pr->hydraulics.solver; double *Aii = solver->Aii; double *Aij = solver->Aij; double *B = solver->F; int *LNZ = solver->LNZ; int *XLNZ = solver->XLNZ; int *NZSUB = solver->NZSUB; int *link, *first; int i, istop, istrt, isub, j, k, kfirst, newk; int errcode = 0; double bj, diagj, ljk; double *temp; temp = (double *) calloc(n+1, sizeof(double)); link = (int *) calloc(n+1,sizeof(int)); first = (int *) calloc(n+1,sizeof(int)); ERRCODE(MEMCHECK(temp)); ERRCODE(MEMCHECK(link)); ERRCODE(MEMCHECK(first)); if (errcode) { errcode = -errcode; goto ENDLINSOLVE; } memset(temp,0,(n+1)*sizeof(double)); memset(link,0,(n+1)*sizeof(int)); /* Begin numerical factorization of matrix A into L */ /* Compute column L(*,j) for j = 1,...n */ for (j=1; j<=n; j++) { /* For each column L(*,k) that affects L(*,j): */ diagj = 0.0; newk = link[j]; k = newk; while (k != 0) { /* Outer product modification of L(*,j) by */ /* L(*,k) starting at first[k] of L(*,k). */ newk = link[k]; kfirst = first[k]; ljk = Aij[LNZ[kfirst]]; diagj += ljk*ljk; istrt = kfirst + 1; istop = XLNZ[k+1] - 1; if (istop >= istrt) { /* Before modification, update vectors 'first' */ /* and 'link' for future modification steps. */ first[k] = istrt; isub = NZSUB[istrt]; link[k] = link[isub]; link[isub] = k; /* The actual mod is saved in vector 'temp'. */ for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; temp[isub] += Aij[LNZ[i]]*ljk; } } k = newk; } /* Apply the modifications accumulated */ /* in 'temp' to column L(*,j). */ diagj = Aii[j] - diagj; if (diagj <= 0.0) /* Check for ill-conditioning */ { errcode = j; goto ENDLINSOLVE; } diagj = sqrt(diagj); Aii[j] = diagj; istrt = XLNZ[j]; istop = XLNZ[j+1] - 1; if (istop >= istrt) { first[j] = istrt; isub = NZSUB[istrt]; link[j] = link[isub]; link[isub] = j; for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; bj = (Aij[LNZ[i]] - temp[isub])/diagj; Aij[LNZ[i]] = bj; temp[isub] = 0.0; } } } /* next j */ /* Foward substitution */ for (j=1; j<=n; j++) { bj = B[j]/Aii[j]; B[j] = bj; istrt = XLNZ[j]; istop = XLNZ[j+1] - 1; if (istop >= istrt) { for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; B[isub] -= Aij[LNZ[i]]*bj; } } } /* Backward substitution */ for (j=n; j>=1; j--) { bj = B[j]; istrt = XLNZ[j]; istop = XLNZ[j+1] - 1; if (istop >= istrt) { for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; bj -= Aij[LNZ[i]]*B[isub]; } } B[j] = bj/Aii[j]; } ENDLINSOLVE: free(temp); free(link); free(first); return(errcode); } /* End of linsolve */ /************************ END OF SMATRIX.C ************************/