/* ******************************************************************* SMATRIX.C -- Sparse matrix routines for EPANET program. VERSION: 2.00 DATE: 5/8/00 AUTHOR: L. Rossman US EPA - NRMRL This module contains the sparse matrix routines used to solve a network's hydraulic equations. The entry points into this module are: createsparse() -- called from openhyd() in HYDRAUL.C freesparse() -- called from closehyd() in HYDRAUL.C linsolve() -- called from netsolve() in HYDRAUL.C Createsparse() does the following: 1. for each node, builds an adjacency list that identifies all links connected to the node (see buildlists()) 2. re-orders the network's nodes to minimize the number of non-zero entries in the hydraulic solution matrix (see reorder()) 3. converts the adjacency lists into a compact scheme for storing the non-zero coeffs. in the lower diagonal portion of the solution matrix (see storesparse()) Freesparse() frees the memory used for the sparse matrix. Linsolve() solves the linearized system of hydraulic equations. ******************************************************************** */ #include #include #ifndef __APPLE__ #include #else #include #endif #include #include "hash.h" #include "text.h" #include "types.h" #include "epanet2.h" #include "funcs.h" #define EXTERN extern #include "vars.h" int createsparse(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns error code ** Purpose: creates sparse representation of coeff. matrix **-------------------------------------------------------------- */ { int errcode = 0; EN_Network *n = &pr->network; solver_t *s = &pr->hydraulics.solver; EN_Network *net = &pr->network; hydraulics_t *hyd = &pr->hydraulics; /* Allocate data structures */ ERRCODE(allocsparse(pr)); if (errcode) { return(errcode); } /* Build node-link adjacency lists with parallel links removed. */ s->Degree = (int *) calloc(n->Nnodes+1, sizeof(int)); ERRCODE(MEMCHECK(s->Degree)); ERRCODE(buildlists(pr,TRUE)); if (!errcode){ xparalinks(pr); /* Remove parallel links */ countdegree(pr); /* Find degree of each junction */ } /* (= # of adjacent links) */ /* Re-order nodes to minimize number of non-zero coeffs. */ /* in factorized solution matrix. At same time, adjacency */ /* list is updated with links representing non-zero coeffs. */ hyd->Ncoeffs = n->Nlinks; ERRCODE(reordernodes(pr)); /* Allocate memory for sparse storage of positions of non-zero */ /* coeffs. and store these positions in vector NZSUB. */ ERRCODE(storesparse(pr,net->Njuncs)); /* Free memory used for adjacency lists and sort */ /* row indexes in NZSUB to optimize linsolve(). */ if (!errcode) { freelists(pr); } ERRCODE(ordersparse(hyd,net->Njuncs)); /* Re-build adjacency lists without removing parallel */ /* links for use in future connectivity checking. */ ERRCODE(buildlists(pr,FALSE)); /* Free allocated memory */ free(s->Degree); return(errcode); } /* End of createsparse */ int allocsparse(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns error code ** Purpose: allocates memory for indexing the solution matrix **-------------------------------------------------------------- */ { EN_Network *n = &pr->network; solver_t *s = &pr->hydraulics.solver; int errcode = 0; n->Adjlist = (Padjlist *) calloc(n->Nnodes+1, sizeof(Padjlist)); s->Order = (int *) calloc(n->Nnodes+1, sizeof(int)); s->Row = (int *) calloc(n->Nnodes+1, sizeof(int)); s->Ndx = (int *) calloc(n->Nlinks+1, sizeof(int)); ERRCODE(MEMCHECK(n->Adjlist)); ERRCODE(MEMCHECK(s->Order)); ERRCODE(MEMCHECK(s->Row)); ERRCODE(MEMCHECK(s->Ndx)); return(errcode); } void freesparse(EN_Project *pr) /* **---------------------------------------------------------------- ** Input: None ** Output: None ** Purpose: Frees memory used for sparse matrix storage **---------------------------------------------------------------- */ { EN_Network *n = &pr->network; solver_t *s = &pr->hydraulics.solver; freelists(pr); free(n->Adjlist); free(s->Order); free(s->Row); free(s->Ndx); free(s->XLNZ); free(s->NZSUB); free(s->LNZ); } /* End of freesparse */ int buildlists(EN_Project *pr, int paraflag) /* **-------------------------------------------------------------- ** Input: paraflag = TRUE if list marks parallel links ** Output: returns error code ** Purpose: builds linked list of links adjacent to each node **-------------------------------------------------------------- */ { int i,j,k; int pmark = 0; int errcode = 0; Padjlist alink; EN_Network *n = &pr->network; /* For each link, update adjacency lists of its end nodes */ for (k=1; k <= n->Nlinks; k++) { i = n->Link[k].N1; j = n->Link[k].N2; if (paraflag) { pmark = paralink(pr,i,j,k); /* Parallel link check */ } /* Include link in start node i's list */ alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist)); if (alink == NULL) return(101); if (!pmark) alink->node = j; else alink->node = 0; /* Parallel link marker */ alink->link = k; alink->next = n->Adjlist[i]; n->Adjlist[i] = alink; /* Include link in end node j's list */ alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist)); if (alink == NULL) return(101); if (!pmark) alink->node = i; else alink->node = 0; /* Parallel link marker */ alink->link = k; alink->next = n->Adjlist[j]; n->Adjlist[j] = alink; } return(errcode); } /* End of buildlists */ int paralink(EN_Project *pr, int i, int j, int k) /* **-------------------------------------------------------------- ** Input: i = index of start node of link ** j = index of end node of link ** k = link index ** Output: returns 1 if link k parallels another link, else 0 ** Purpose: checks for parallel links between nodes i and j ** **-------------------------------------------------------------- */ { Padjlist alink; for (alink = pr->network.Adjlist[i]; alink != NULL; alink = alink->next) { if (alink->node == j) /* Link || to k (same end nodes) */ { pr->hydraulics.solver.Ndx[k] = alink->link; /* Assign Ndx entry to this link */ return(1); } } pr->hydraulics.solver.Ndx[k] = k; /* Ndx entry if link not parallel */ return(0); } /* End of paralink */ void xparalinks(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: none ** Purpose: removes parallel links from nodal adjacency lists **-------------------------------------------------------------- */ { int i; Padjlist alink, /* Current item in adjacency list */ blink; /* Previous item in adjacency list */ EN_Network *n = &pr->network; /* Scan adjacency list of each node */ for (i=1; i <= n->Nnodes; i++) { alink = n->Adjlist[i]; /* First item in list */ blink = NULL; while (alink != NULL) { if (alink->node == 0) /* Parallel link marker found */ { if (blink == NULL) /* This holds at start of list */ { n->Adjlist[i] = alink->next; free(alink); /* Remove item from list */ alink = n->Adjlist[i]; } else /* This holds for interior of list */ { blink->next = alink->next; free(alink); /* Remove item from list */ alink = blink->next; } } else { blink = alink; /* Move to next item in list */ alink = alink->next; } } } } /* End of xparalinks */ void freelists(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: none ** Purpose: frees memory used for nodal adjacency lists **-------------------------------------------------------------- */ { int i; Padjlist alink; EN_Network *n = &pr->network; for (i=0; i <= n->Nnodes; i++) { for (alink = n->Adjlist[i]; alink != NULL; alink = n->Adjlist[i]) { n->Adjlist[i] = alink->next; free(alink); } } } /* End of freelists */ void countdegree(EN_Project *pr) /* **---------------------------------------------------------------- ** Input: none ** Output: none ** Purpose: counts number of nodes directly connected to each node **---------------------------------------------------------------- */ { int i; Padjlist alink; EN_Network *n = &pr->network; memset(pr->hydraulics.solver.Degree,0,(n->Nnodes+1) * sizeof(int)); /* NOTE: For purposes of node re-ordering, Tanks (nodes with */ /* indexes above Njuncs) have zero degree of adjacency. */ for (i=1; i <= n->Njuncs; i++) { for (alink = n->Adjlist[i]; alink != NULL; alink = alink->next) { if (alink->node > 0) { pr->hydraulics.solver.Degree[i]++; } } } } int reordernodes(EN_Project *pr) /* **-------------------------------------------------------------- ** Input: none ** Output: returns 1 if successful, 0 if not ** Purpose: re-orders nodes to minimize # of non-zeros that ** will appear in factorized solution matrix **-------------------------------------------------------------- */ { int k, knode, m, n; EN_Network *net = &pr->network; solver_t *s = &pr->hydraulics.solver; for (k=1; k <= net->Nnodes; k++) { s->Row[k] = k; s->Order[k] = k; } n = net->Njuncs; for (k=1; k<=n; k++) /* Examine each junction */ { m = mindegree(s,k,n); /* Node with lowest degree */ knode = s->Order[m]; /* Node's index */ if (!growlist(pr,knode)) { return(101); /* Augment adjacency list */ } s->Order[m] = s->Order[k]; /* Switch order of nodes */ s->Order[k] = knode; s->Degree[knode] = 0; /* In-activate node */ } for (k=1; k<=n; k++) { /* Assign nodes to rows of */ s->Row[s->Order[k]] = k; /* coeff. matrix */ } return(0); } /* End of reordernodes */ int mindegree(solver_t *s, int k, int n) /* **-------------------------------------------------------------- ** Input: k = first node in list of active nodes ** n = total number of junction nodes ** Output: returns node index with fewest direct connections ** Purpose: finds active node with fewest direct connections **-------------------------------------------------------------- */ { int i, m; int min = n, imin = n; for (i=k; i<=n; i++) { m = s->Degree[s->Order[i]]; if (m < min) { min = m; imin = i; } } return(imin); } /* End of mindegree */ int growlist(EN_Project *pr, int knode) /* **-------------------------------------------------------------- ** Input: knode = node index ** Output: returns 1 if successful, 0 if not ** Purpose: creates new entries in knode's adjacency list for ** all unlinked pairs of active nodes that are ** adjacent to knode **-------------------------------------------------------------- */ { int node; Padjlist alink; EN_Network *n = &pr->network; solver_t *s = &pr->hydraulics.solver; /* Iterate through all nodes connected to knode */ for (alink = n->Adjlist[knode]; alink != NULL; alink = alink -> next) { node = alink->node; /* End node of connecting link */ if (s->Degree[node] > 0) /* End node is active */ { s->Degree[node]--; /* Reduce degree of adjacency */ if (!newlink(pr,alink)) { /* Add to adjacency list */ return(0); } } } return(1); } /* End of growlist */ int newlink(EN_Project *pr, Padjlist alink) /* **-------------------------------------------------------------- ** Input: alink = element of node's adjacency list ** Output: returns 1 if successful, 0 if not ** Purpose: links end of current adjacent link to end nodes of ** all links that follow it on adjacency list **-------------------------------------------------------------- */ { int inode, jnode; Padjlist blink; EN_Network *n = &pr->network; hydraulics_t *hyd = &pr->hydraulics; solver_t *s = &pr->hydraulics.solver; /* Scan all entries in adjacency list that follow anode. */ inode = alink->node; /* End node of connection to anode */ for (blink = alink->next; blink != NULL; blink = blink->next) { jnode = blink->node; /* End node of next connection */ /* If jnode still active, and inode not connected to jnode, */ /* then add a new connection between inode and jnode. */ if (s->Degree[jnode] > 0) /* jnode still active */ { if (!linked(n, inode,jnode)) { /* inode not linked to jnode */ /* Since new connection represents a non-zero coeff. */ /* in the solution matrix, update the coeff. count. */ hyd->Ncoeffs++; /* Update adjacency lists for inode & jnode to */ /* reflect the new connection. */ if (!addlink(n,inode,jnode,hyd->Ncoeffs)) { return(0); } if (!addlink(n,jnode,inode,hyd->Ncoeffs)) { return(0); } s->Degree[inode]++; s->Degree[jnode]++; } } } return(1); } /* End of newlink */ int linked(EN_Network *n, int i, int j) /* **-------------------------------------------------------------- ** Input: i = node index ** j = node index ** Output: returns 1 if nodes i and j are linked, 0 if not ** Purpose: checks if nodes i and j are already linked. **-------------------------------------------------------------- */ { Padjlist alink; for (alink = n->Adjlist[i]; alink != NULL; alink = alink->next) { if (alink->node == j) { return(1); } } return(0); } /* End of linked */ int addlink(EN_Network *net, int i, int j, int n) /* **-------------------------------------------------------------- ** Input: i = node index ** j = node index ** n = link index ** Output: returns 1 if successful, 0 if not ** Purpose: augments node i's adjacency list with node j **-------------------------------------------------------------- */ { Padjlist alink; alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist)); if (alink == NULL) return(0); alink->node = j; alink->link = n; alink->next = net->Adjlist[i]; net->Adjlist[i] = alink; return(1); } /* End of addlink */ int storesparse(EN_Project *pr, int n) /* **-------------------------------------------------------------- ** Input: n = number of rows in solution matrix ** Output: returns error code ** Purpose: stores row indexes of non-zeros of each column of ** lower triangular portion of factorized matrix **-------------------------------------------------------------- */ { Padjlist alink; int i, ii, j, k, l, m; int errcode = 0; EN_Network *net = &pr->network; hydraulics_t *hyd = &pr->hydraulics; solver_t *s = &pr->hydraulics.solver; /* Allocate sparse matrix storage */ s->XLNZ = (int *) calloc(n+2, sizeof(int)); s->NZSUB = (int *) calloc(hyd->Ncoeffs+2, sizeof(int)); s->LNZ = (int *) calloc(hyd->Ncoeffs+2, sizeof(int)); ERRCODE(MEMCHECK(s->XLNZ)); ERRCODE(MEMCHECK(s->NZSUB)); ERRCODE(MEMCHECK(s->LNZ)); if (errcode) { return(errcode); } /* Generate row index pointers for each column of matrix */ k = 0; s->XLNZ[1] = 1; for (i=1; i<=n; i++) { /* column */ m = 0; ii = s->Order[i]; for (alink = net->Adjlist[ii]; alink != NULL; alink = alink->next) { j = s->Row[alink->node]; /* row */ l = alink->link; if (j > i && j <= n) { m++; k++; s->NZSUB[k] = j; s->LNZ[k] = l; } } s->XLNZ[i+1] = s->XLNZ[i] + m; } return(errcode); } /* End of storesparse */ int ordersparse(hydraulics_t *h, int n) /* **-------------------------------------------------------------- ** Input: n = number of rows in solution matrix ** Output: returns eror code ** Purpose: puts row indexes in ascending order in NZSUB **-------------------------------------------------------------- */ { int i, k; int *xlnzt, *nzsubt, *lnzt, *nzt; int errcode = 0; solver_t *s = &h->solver; xlnzt = (int *) calloc(n+2, sizeof(int)); nzsubt = (int *) calloc(h->Ncoeffs+2, sizeof(int)); lnzt = (int *) calloc(h->Ncoeffs+2, sizeof(int)); nzt = (int *) calloc(n+2, sizeof(int)); ERRCODE(MEMCHECK(xlnzt)); ERRCODE(MEMCHECK(nzsubt)); ERRCODE(MEMCHECK(lnzt)); ERRCODE(MEMCHECK(nzt)); if (!errcode) { /* Count # non-zeros in each row */ for (i=1; i<=n; i++) { nzt[i] = 0; } for (i=1; i<=n; i++) { for (k = s->XLNZ[i]; k < s->XLNZ[i+1]; k++) nzt[s->NZSUB[k]]++; } xlnzt[1] = 1; for (i=1; i<=n; i++) xlnzt[i+1] = xlnzt[i] + nzt[i]; /* Transpose matrix twice to order column indexes */ transpose(n,s->XLNZ,s->NZSUB,s->LNZ,xlnzt,nzsubt,lnzt,nzt); transpose(n,xlnzt,nzsubt,lnzt,s->XLNZ,s->NZSUB,s->LNZ,nzt); } /* Reclaim memory */ free(xlnzt); free(nzsubt); free(lnzt); free(nzt); return(errcode); } /* End of ordersparse */ void transpose(int n, int *il, int *jl, int *xl, int *ilt, int *jlt, int *xlt, int *nzt) /* **--------------------------------------------------------------------- ** Input: n = matrix order ** il,jl,xl = sparse storage scheme for original matrix ** nzt = work array ** Output: ilt,jlt,xlt = sparse storage scheme for transposed matrix ** Purpose: Determines sparse storage scheme for transpose of a matrix **--------------------------------------------------------------------- */ { int i, j, k, kk; for (i=1; i<=n; i++) nzt[i] = 0; for (i=1; i<=n; i++) { for (k=il[i]; kF = solution values ** returns 0 if solution found, or index of ** equation causing system to be ill-conditioned ** Purpose: solves sparse symmetric system of linear ** equations using Cholesky factorization ** ** NOTE: This procedure assumes that the solution matrix has ** been symbolically factorized with the positions of ** the lower triangular, off-diagonal, non-zero coeffs. ** stored in the following integer arrays: ** XLNZ (start position of each column in NZSUB) ** NZSUB (row index of each non-zero in each column) ** LNZ (position of each NZSUB entry in Aij array) ** ** This procedure has been adapted from subroutines GSFCT and ** GSSLV in the book "Computer Solution of Large Sparse ** Positive Definite Systems" by A. George and J. W-H Liu ** (Prentice-Hall, 1981). **-------------------------------------------------------------- */ { double *Aii = s->Aii; double *Aij = s->Aij; double *B = s->F; int *LNZ = s->LNZ; int *XLNZ = s->XLNZ; int *NZSUB = s->NZSUB; int *link, *first; int i, istop, istrt, isub, j, k, kfirst, newk; int errcode = 0; double bj, diagj, ljk; double *temp; temp = (double *) calloc(n+1, sizeof(double)); link = (int *) calloc(n+1,sizeof(int)); first = (int *) calloc(n+1,sizeof(int)); ERRCODE(MEMCHECK(temp)); ERRCODE(MEMCHECK(link)); ERRCODE(MEMCHECK(first)); if (errcode) { errcode = -errcode; goto ENDLINSOLVE; } memset(temp,0,(n+1)*sizeof(double)); memset(link,0,(n+1)*sizeof(int)); /* Begin numerical factorization of matrix A into L */ /* Compute column L(*,j) for j = 1,...n */ for (j=1; j<=n; j++) { /* For each column L(*,k) that affects L(*,j): */ diagj = 0.0; newk = link[j]; k = newk; while (k != 0) { /* Outer product modification of L(*,j) by */ /* L(*,k) starting at first[k] of L(*,k). */ newk = link[k]; kfirst = first[k]; ljk = Aij[LNZ[kfirst]]; diagj += ljk*ljk; istrt = kfirst + 1; istop = XLNZ[k+1] - 1; if (istop >= istrt) { /* Before modification, update vectors 'first' */ /* and 'link' for future modification steps. */ first[k] = istrt; isub = NZSUB[istrt]; link[k] = link[isub]; link[isub] = k; /* The actual mod is saved in vector 'temp'. */ for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; temp[isub] += Aij[LNZ[i]]*ljk; } } k = newk; } /* Apply the modifications accumulated */ /* in 'temp' to column L(*,j). */ diagj = Aii[j] - diagj; if (diagj <= 0.0) /* Check for ill-conditioning */ { errcode = j; goto ENDLINSOLVE; } diagj = sqrt(diagj); Aii[j] = diagj; istrt = XLNZ[j]; istop = XLNZ[j+1] - 1; if (istop >= istrt) { first[j] = istrt; isub = NZSUB[istrt]; link[j] = link[isub]; link[isub] = j; for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; bj = (Aij[LNZ[i]] - temp[isub])/diagj; Aij[LNZ[i]] = bj; temp[isub] = 0.0; } } } /* next j */ /* Foward substitution */ for (j=1; j<=n; j++) { bj = B[j]/Aii[j]; B[j] = bj; istrt = XLNZ[j]; istop = XLNZ[j+1] - 1; if (istop >= istrt) { for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; B[isub] -= Aij[LNZ[i]]*bj; } } } /* Backward substitution */ for (j=n; j>=1; j--) { bj = B[j]; istrt = XLNZ[j]; istop = XLNZ[j+1] - 1; if (istop >= istrt) { for (i=istrt; i<=istop; i++) { isub = NZSUB[i]; bj -= Aij[LNZ[i]]*B[isub]; } } B[j] = bj/Aii[j]; } ENDLINSOLVE: free(temp); free(link); free(first); return(errcode); } /* End of linsolve */ /************************ END OF SMATRIX.C ************************/