Files
EPANET/tools/nrtest-epanet/report_diff.py
2018-07-16 14:25:53 -04:00

96 lines
2.6 KiB
Python

# -*- coding: utf-8 -*-
#
# report_diff.py
#
# Date Created: July 11, 2018
#
# Author: Michael E. Tryby
# US EPA - ORD/NRMRL
#
# system imports
import itertools as it
# third party imports
import numpy as np
# project imports
import nrtest_epanet.output_reader as ordr
def _binary_diff(path_test, path_ref, min_cdd):
for (test, ref) in it.izip(ordr.output_generator(path_test),
ordr.output_generator(path_ref)):
if len(test[0]) != len(ref[0]):
raise ValueError('Inconsistent lengths')
# Skip over arrays that are equal
if np.array_equal(test[0], ref[0]):
continue
else:
lre = _log_relative_error(test[0], ref[0])
idx = np.unravel_index(np.argmin(lre), lre.shape)
if lre[idx] < min_cdd:
_print_diff(idx, lre, test, ref)
return
def _log_relative_error(q, c):
'''
Computes log relative error, a measure of numerical accuracy.
Single precision machine epsilon is between 2^-24 and 2^-23.
Reference:
McCullough, B. D. "Assessing the Reliability of Statistical Software: Part I."
The American Statistician, vol. 52, no. 4, 1998, pp. 358-366.
'''
diff = np.subtract(q, c)
tmp_c = np.copy(c)
# If ref value is small compute absolute error
tmp_c[np.fabs(tmp_c) < 1.0e-6] = 1.0
re = np.fabs(diff)/np.fabs(tmp_c)
# If re is tiny set lre to number of digits
re[re < 1.0e-7] = 1.0e-7
# If re is very large set lre to zero
re[re > 2.0] = 1.0
return np.negative(np.log10(re))
def _print_diff(idx, lre, test, ref):
idx_val = (idx[0], ref[1])
test_val = (test[0][idx[0]])
ref_val = (ref[0][idx[0]])
diff_val = (test_val - ref_val)
lre_val = (lre[idx[0]])
print("Idx: %s\nSut: %f Ref: %f Diff: %f LRE: %f\n"
% (idx_val, test_val, ref_val, diff_val, lre_val))
def report(args):
_binary_diff(args.test, args.ref, args.mincdd)
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser(description='EPANET benchmark difference reporting')
parser.set_defaults(func=report)
parser.add_argument('-t', '--test', default=None,
help='Path to test benchmark')
parser.add_argument('-r', '--ref', default=None,
help='Path to reference benchmark')
parser.add_argument('-mc', '--mincdd', type=int, default=3,
help='Minimum correct decimal digits')
args = parser.parse_args()
args.func(args)