Files
EPANET/src/inpfile.c
Lew Rossman 0cfa45e52e New updates to address compiler warnings (issue #370)
In addition to addressing compiler warnings, argument names in the API function prototypes were made more consistent and descriptive. Also additional Doxygen comments were added in preparation for producing a more thorough documentation of the API.
2019-01-19 16:56:19 -05:00

771 lines
23 KiB
C

/*
******************************************************************************
Project: OWA EPANET
Version: 2.2
Module: inpfile.c
Description: saves network data to an EPANET formatted text file
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 11/27/2018
******************************************************************************
*/
#include <stdio.h>
#include <string.h>
#ifndef __APPLE__
#include <malloc.h>
#else
#include <stdlib.h>
#endif
#include <math.h>
#include "types.h"
#include "funcs.h"
#include "hash.h"
#include "text.h"
// Defined in enumstxt.h in EPANET.C
extern char *LinkTxt[];
extern char *FormTxt[];
extern char *StatTxt[];
extern char *FlowUnitsTxt[];
extern char *PressUnitsTxt[];
extern char *ControlTxt[];
extern char *SourceTxt[];
extern char *MixTxt[];
extern char *TstatTxt[];
extern char *RptFlagTxt[];
extern char *SectTxt[];
void saveauxdata(Parser *parser, FILE *f)
/*
------------------------------------------------------------
Writes auxilary data from original input file to new file.
------------------------------------------------------------
*/
{
int sect, newsect;
char *tok;
char line[MAXLINE + 1];
char s[MAXLINE + 1];
FILE *InFile = parser->InFile;
sect = -1;
if (InFile == NULL) return;
rewind(InFile);
while (fgets(line, MAXLINE, InFile) != NULL)
{
strcpy(s, line);
tok = strtok(s, SEPSTR);
if (tok == NULL) continue;
// Check if line begins with a new section heading
if (*tok == '[')
{
newsect = findmatch(tok, SectTxt);
if (newsect >= 0)
{
sect = newsect;
if (sect == _END) break;
}
}
// Write line of auxilary data to file
switch (sect)
{
case _VERTICES:
case _LABELS:
case _BACKDROP:
case _TAGS:
fprintf(f, "%s", line);
break;
default:
break;
}
}
}
int saveinpfile(Project *pr, const char *fname)
/*
-------------------------------------------------
Writes network data to text file.
-------------------------------------------------
*/
{
Network *net = &pr->network;
Parser *parser = &pr->parser;
Report *rpt = &pr->report;
Outfile *out = &pr->outfile;
Hydraul *hyd = &pr->hydraul;
Quality *qual = &pr->quality;
Times *time = &pr->times;
int i, j, n;
double d, kc, ke, km, ucf;
char s[MAXLINE + 1], s1[MAXLINE + 1], s2[MAXLINE + 1];
Pdemand demand;
Psource source;
FILE *f;
Slink *link;
Stank *tank;
Snode *node;
Spump *pump;
Scontrol *control;
Scurve *curve;
// Open the new text file
if ((f = fopen(fname, "wt")) == NULL) return 302;
// Write [TITLE] section
fprintf(f, s_TITLE);
for (i = 0; i < 3; i++)
{
if (strlen(pr->Title[i]) > 0) fprintf(f, "\n%s", pr->Title[i]);
}
// Write [JUNCTIONS] section
// (Leave demands for [DEMANDS] section)
fprintf(f, "\n\n");
fprintf(f, s_JUNCTIONS);
for (i = 1; i <= net->Njuncs; i++)
{
node = &net->Node[i];
fprintf(f, "\n %-31s %12.4f ;%s", node->ID, node->El * pr->Ucf[ELEV],
node->Comment);
}
// Write [RESERVOIRS] section
fprintf(f, "\n\n");
fprintf(f, s_RESERVOIRS);
for (i = 1; i <= net->Ntanks; i++)
{
tank = &net->Tank[i];
if (tank->A == 0.0)
{
node = &net->Node[tank->Node];
sprintf(s, " %-31s %12.4f", node->ID, node->El * pr->Ucf[ELEV]);
if ((j = tank->Pat) > 0) sprintf(s1, " %-31s", net->Pattern[j].ID);
else strcpy(s1, "");
fprintf(f, "\n%s %s ;%s", s, s1, node->Comment);
}
}
// Write [TANKS] section
fprintf(f, "\n\n");
fprintf(f, s_TANKS);
for (i = 1; i <= net->Ntanks; i++)
{
tank = &net->Tank[i];
if (tank->A > 0.0)
{
node = &net->Node[tank->Node];
sprintf(s, " %-31s %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f",
node->ID, node->El * pr->Ucf[ELEV],
(tank->H0 - node->El) * pr->Ucf[ELEV],
(tank->Hmin - node->El) * pr->Ucf[ELEV],
(tank->Hmax - node->El) * pr->Ucf[ELEV],
sqrt(4.0 * tank->A / PI) * pr->Ucf[ELEV],
tank->Vmin * SQR(pr->Ucf[ELEV]) * pr->Ucf[ELEV]);
if ((j = tank->Vcurve) > 0) sprintf(s1, "%-31s", net->Curve[j].ID);
else strcpy(s1, "");
fprintf(f, "\n%s %s ;%s", s, s1, node->Comment);
}
}
// Write [PIPES] section
fprintf(f, "\n\n");
fprintf(f, s_PIPES);
for (i = 1; i <= net->Nlinks; i++)
{
link = &net->Link[i];
if (link->Type <= PIPE)
{
d = link->Diam;
kc = link->Kc;
if (hyd->Formflag == DW) kc = kc * pr->Ucf[ELEV] * 1000.0;
km = link->Km * SQR(d) * SQR(d) / 0.02517;
sprintf(s, " %-31s %-31s %-31s %12.4f %12.4f", link->ID,
net->Node[link->N1].ID, net->Node[link->N2].ID,
link->Len * pr->Ucf[LENGTH], d * pr->Ucf[DIAM]);
if (hyd->Formflag == DW) sprintf(s1, "%12.4f %12.4f", kc, km);
else sprintf(s1, "%12.4f %12.4f", kc, km);
if (link->Type == CVPIPE) sprintf(s2, "CV");
else if (link->Status == CLOSED) sprintf(s2, "CLOSED");
else strcpy(s2, "");
fprintf(f, "\n%s %s %s ;%s", s, s1, s2, link->Comment);
}
}
// Write [PUMPS] section
fprintf(f, "\n\n");
fprintf(f, s_PUMPS);
for (i = 1; i <= net->Npumps; i++)
{
n = net->Pump[i].Link;
link = &net->Link[n];
pump = &net->Pump[i];
sprintf(s, " %-31s %-31s %-31s", link->ID, net->Node[link->N1].ID,
net->Node[link->N2].ID);
// Pump has constant power
if (pump->Ptype == CONST_HP) sprintf(s1, " POWER %.4f", link->Km);
// Pump has a head curve
else if ((j = pump->Hcurve) > 0)
{
sprintf(s1, " HEAD %s", net->Curve[j].ID);
}
// Old format used for pump curve
else
{
fprintf(f, "\n%s %12.4f %12.4f %12.4f 0.0 %12.4f", s,
-pump->H0 * pr->Ucf[HEAD],
(-pump->H0 - pump->R * pow(pump->Q0, pump->N)) * pr->Ucf[HEAD],
pump->Q0 * pr->Ucf[FLOW], pump->Qmax * pr->Ucf[FLOW]);
continue;
}
strcat(s, s1);
// Optional speed pattern
if ((j = pump->Upat) > 0)
{
sprintf(s1, " PATTERN %s", net->Pattern[j].ID);
strcat(s, s1);
}
// Optional speed setting
if (link->Kc != 1.0)
{
sprintf(s1, " SPEED %.4f", link->Kc);
strcat(s, s1);
}
fprintf(f, "\n%s ;%s", s, link->Comment);
}
// Write [VALVES] section
fprintf(f, "\n\n");
fprintf(f, s_VALVES);
for (i = 1; i <= net->Nvalves; i++)
{
n = net->Valve[i].Link;
link = &net->Link[n];
d = link->Diam;
// Valve setting
kc = link->Kc;
if (kc == MISSING) kc = 0.0;
switch (link->Type)
{
case FCV:
kc *= pr->Ucf[FLOW];
break;
case PRV:
case PSV:
case PBV:
kc *= pr->Ucf[PRESSURE];
break;
default:
break;
}
km = link->Km * SQR(d) * SQR(d) / 0.02517;
sprintf(s, " %-31s %-31s %-31s %12.4f %5s",
link->ID, net->Node[link->N1].ID,
net->Node[link->N2].ID, d * pr->Ucf[DIAM],
LinkTxt[link->Type]);
// For GPV, setting = head curve index
if (link->Type == GPV && (j = ROUND(link->Kc)) > 0)
{
sprintf(s1, "%-31s %12.4f", net->Curve[j].ID, km);
}
else sprintf(s1, "%12.4f %12.4f", kc, km);
fprintf(f, "\n%s %s ;%s", s, s1, link->Comment);
}
// Write [DEMANDS] section
fprintf(f, "\n\n");
fprintf(f, s_DEMANDS);
ucf = pr->Ucf[DEMAND];
for (i = 1; i <= net->Njuncs; i++)
{
node = &net->Node[i];
for (demand = node->D; demand != NULL; demand = demand->next)
{
sprintf(s, " %-31s %14.6f", node->ID, ucf * demand->Base);
if ((j = demand->Pat) > 0) sprintf(s1, " %s", net->Pattern[j].ID);
else strcpy(s1, "");
fprintf(f, "\n%s %s ;%s", s, s1, demand->Name);
}
}
// Write [EMITTERS] section
fprintf(f, "\n\n");
fprintf(f, s_EMITTERS);
for (i = 1; i <= net->Njuncs; i++)
{
node = &net->Node[i];
if (node->Ke == 0.0) continue;
ke = pr->Ucf[FLOW] / pow(pr->Ucf[PRESSURE] * node->Ke, (1.0 / hyd->Qexp));
fprintf(f, "\n %-31s %14.6f", node->ID, ke);
}
// Write [STATUS] section
fprintf(f, "\n\n");
fprintf(f, s_STATUS);
for (i = 1; i <= net->Nlinks; i++)
{
link = &net->Link[i];
if (link->Type <= PUMP)
{
if (link->Status == CLOSED)
{
fprintf(f, "\n %-31s %s", link->ID, StatTxt[CLOSED]);
}
// Write pump speed here for pumps with old-style pump curve input
else if (link->Type == PUMP)
{
n = findpump(net, i);
pump = &net->Pump[n];
if (pump->Hcurve == 0 && pump->Ptype != CONST_HP &&
link->Kc != 1.0)
{
fprintf(f, "\n %-31s %-.4f", link->ID, link->Kc);
}
}
}
// Write fixed-status PRVs & PSVs (setting = MISSING)
else if (link->Kc == MISSING)
{
if (link->Status == OPEN)
{
fprintf(f, "\n %-31s %s", link->ID, StatTxt[OPEN]);
}
if (link->Status == CLOSED)
{
fprintf(f, "\n%-31s %s", link->ID, StatTxt[CLOSED]);
}
}
}
// Write [PATTERNS] section
// (Use 6 pattern factors per line)
fprintf(f, "\n\n");
fprintf(f, s_PATTERNS);
for (i = 1; i <= net->Npats; i++)
{
for (j = 0; j < net->Pattern[i].Length; j++)
{
if (j % 6 == 0) fprintf(f, "\n %-31s", net->Pattern[i].ID);
fprintf(f, " %12.4f", net->Pattern[i].F[j]);
}
}
// Write [CURVES] section
fprintf(f, "\n\n");
fprintf(f, s_CURVES);
for (i = 1; i <= net->Ncurves; i++)
{
for (j = 0; j < net->Curve[i].Npts; j++)
{
curve = &net->Curve[i];
fprintf(f, "\n %-31s %12.4f %12.4f", curve->ID, curve->X[j],
curve->Y[j]);
}
}
// Write [CONTROLS] section
fprintf(f, "\n\n");
fprintf(f, s_CONTROLS);
for (i = 1; i <= net->Ncontrols; i++)
{
// Check that controlled link exists
control = &net->Control[i];
if ((j = control->Link) <= 0) continue;
link = &net->Link[j];
// Get text of control's link status/setting
if (control->Setting == MISSING)
{
sprintf(s, " LINK %s %s ", link->ID, StatTxt[control->Status]);
}
else
{
kc = control->Setting;
switch (link->Type)
{
case PRV:
case PSV:
case PBV:
kc *= pr->Ucf[PRESSURE];
break;
case FCV:
kc *= pr->Ucf[FLOW];
break;
default:
break;
}
sprintf(s, " LINK %s %.4f", link->ID, kc);
}
switch (control->Type)
{
// Print level control
case LOWLEVEL:
case HILEVEL:
n = control->Node;
node = &net->Node[n];
kc = control->Grade - node->El;
if (n > net->Njuncs) kc *= pr->Ucf[HEAD];
else kc *= pr->Ucf[PRESSURE];
fprintf(f, "\n%s IF NODE %s %s %.4f", s, node->ID,
ControlTxt[control->Type], kc);
break;
// Print timer control
case TIMER:
fprintf(f, "\n%s AT %s %.4f HOURS", s, ControlTxt[TIMER],
control->Time / 3600.);
break;
// Print time-of-day control
case TIMEOFDAY:
fprintf(f, "\n%s AT %s %s", s, ControlTxt[TIMEOFDAY],
clocktime(rpt->Atime, control->Time));
break;
}
}
// Write [RULES] section
fprintf(f, "\n\n");
fprintf(f, s_RULES);
for (i = 1; i <= net->Nrules; i++)
{
fprintf(f, "\nRULE %s", pr->network.Rule[i].label);
writerule(pr, f, i); // see RULES.C
fprintf(f, "\n");
}
// Write [QUALITY] section
// (Skip nodes with default quality of 0)
fprintf(f, "\n\n");
fprintf(f, s_QUALITY);
for (i = 1; i <= net->Nnodes; i++)
{
node = &net->Node[i];
if (node->C0 == 0.0) continue;
fprintf(f, "\n %-31s %14.6f", node->ID, node->C0 * pr->Ucf[QUALITY]);
}
// Write [SOURCES] section
fprintf(f, "\n\n");
fprintf(f, s_SOURCES);
for (i = 1; i <= net->Nnodes; i++)
{
node = &net->Node[i];
source = node->S;
if (source == NULL) continue;
sprintf(s, " %-31s %-8s %14.6f", node->ID, SourceTxt[source->Type],
source->C0);
if ((j = source->Pat) > 0)
{
sprintf(s1, "%s", net->Pattern[j].ID);
}
else strcpy(s1, "");
fprintf(f, "\n%s %s", s, s1);
}
// Write [MIXING] section
fprintf(f, "\n\n");
fprintf(f, s_MIXING);
for (i = 1; i <= net->Ntanks; i++)
{
tank = &net->Tank[i];
if (tank->A == 0.0) continue;
fprintf(f, "\n %-31s %-8s %12.4f", net->Node[tank->Node].ID,
MixTxt[tank->MixModel], (tank->V1max / tank->Vmax));
}
// Write [REACTIONS] section
fprintf(f, "\n\n");
fprintf(f, s_REACTIONS);
// General parameters
fprintf(f, "\n ORDER BULK %-.2f", qual->BulkOrder);
fprintf(f, "\n ORDER WALL %-.0f", qual->WallOrder);
fprintf(f, "\n ORDER TANK %-.2f", qual->TankOrder);
fprintf(f, "\n GLOBAL BULK %-.6f", qual->Kbulk * SECperDAY);
fprintf(f, "\n GLOBAL WALL %-.6f", qual->Kwall * SECperDAY);
if (qual->Climit > 0.0)
{
fprintf(f, "\n LIMITING POTENTIAL %-.6f", qual->Climit);
}
if (qual->Rfactor != MISSING && qual->Rfactor != 0.0)
{
fprintf(f, "\n ROUGHNESS CORRELATION %-.6f", qual->Rfactor);
}
// Pipe-specific parameters
for (i = 1; i <= net->Nlinks; i++)
{
link = &net->Link[i];
if (link->Type > PIPE) continue;
if (link->Kb != qual->Kbulk)
{
fprintf(f, "\n BULK %-31s %-.6f", link->ID, link->Kb * SECperDAY);
}
if (link->Kw != qual->Kwall)
{
fprintf(f, "\n WALL %-31s %-.6f", link->ID, link->Kw * SECperDAY);
}
}
// Tank parameters
for (i = 1; i <= net->Ntanks; i++)
{
tank = &net->Tank[i];
if (tank->A == 0.0) continue;
if (tank->Kb != qual->Kbulk)
{
fprintf(f, "\n TANK %-31s %-.6f", net->Node[tank->Node].ID,
tank->Kb * SECperDAY);
}
}
// Write [ENERGY] section
fprintf(f, "\n\n");
fprintf(f, s_ENERGY);
// General parameters
if (hyd->Ecost != 0.0)
{
fprintf(f, "\n GLOBAL PRICE %-.4f", hyd->Ecost);
}
if (hyd->Epat != 0)
{
fprintf(f, "\n GLOBAL PATTERN %s", net->Pattern[hyd->Epat].ID);
}
fprintf(f, "\n GLOBAL EFFIC %-.4f", hyd->Epump);
fprintf(f, "\n DEMAND CHARGE %-.4f", hyd->Dcost);
// Pump-specific parameters
for (i = 1; i <= net->Npumps; i++)
{
pump = &net->Pump[i];
if (pump->Ecost > 0.0)
{
fprintf(f, "\n PUMP %-31s PRICE %-.4f", net->Link[pump->Link].ID,
pump->Ecost);
}
if (pump->Epat > 0.0)
{
fprintf(f, "\n PUMP %-31s PATTERN %s", net->Link[pump->Link].ID,
net->Pattern[pump->Epat].ID);
}
if (pump->Ecurve > 0.0)
{
fprintf(f, "\n PUMP %-31s EFFIC %s", net->Link[pump->Link].ID,
net->Curve[pump->Ecurve].ID);
}
}
// Write [TIMES] section
fprintf(f, "\n\n");
fprintf(f, s_TIMES);
fprintf(f, "\n DURATION %s", clocktime(rpt->Atime, time->Dur));
fprintf(f, "\n HYDRAULIC TIMESTEP %s", clocktime(rpt->Atime, time->Hstep));
fprintf(f, "\n QUALITY TIMESTEP %s", clocktime(rpt->Atime, time->Qstep));
fprintf(f, "\n REPORT TIMESTEP %s", clocktime(rpt->Atime, time->Rstep));
fprintf(f, "\n REPORT START %s", clocktime(rpt->Atime, time->Rstart));
fprintf(f, "\n PATTERN TIMESTEP %s", clocktime(rpt->Atime, time->Pstep));
fprintf(f, "\n PATTERN START %s", clocktime(rpt->Atime, time->Pstart));
fprintf(f, "\n RULE TIMESTEP %s", clocktime(rpt->Atime, time->Rulestep));
fprintf(f, "\n START CLOCKTIME %s", clocktime(rpt->Atime, time->Tstart));
fprintf(f, "\n STATISTIC %s", TstatTxt[rpt->Tstatflag]);
// Write [OPTIONS] section
fprintf(f, "\n\n");
fprintf(f, s_OPTIONS);
fprintf(f, "\n UNITS %s", FlowUnitsTxt[parser->Flowflag]);
fprintf(f, "\n PRESSURE %s", PressUnitsTxt[parser->Pressflag]);
fprintf(f, "\n HEADLOSS %s", FormTxt[hyd->Formflag]);
if (hyd->DefPat >= 1 && hyd->DefPat <= net->Npats)
{
fprintf(f, "\n PATTERN %s", net->Pattern[hyd->DefPat].ID);
}
switch (out->Hydflag)
{
case USE:
fprintf(f, "\n HYDRAULICS USE %s", out->HydFname);
break;
case SAVE:
fprintf(f, "\n HYDRAULICS SAVE %s", out->HydFname);
break;
}
if (hyd->ExtraIter == -1)
{
fprintf(f, "\n UNBALANCED STOP");
}
if (hyd->ExtraIter >= 0)
{
fprintf(f, "\n UNBALANCED CONTINUE %d", hyd->ExtraIter);
}
switch (qual->Qualflag)
{
case CHEM:
fprintf(f, "\n QUALITY %s %s",
qual->ChemName, qual->ChemUnits);
break;
case TRACE:
fprintf(f, "\n QUALITY TRACE %-31s",
net->Node[qual->TraceNode].ID);
break;
case AGE:
fprintf(f, "\n QUALITY AGE");
break;
case NONE:
fprintf(f, "\n QUALITY NONE");
break;
}
fprintf(f, "\n DEMAND MULTIPLIER %-.4f", hyd->Dmult);
fprintf(f, "\n EMITTER EXPONENT %-.4f", 1.0 / hyd->Qexp);
fprintf(f, "\n VISCOSITY %-.6f", hyd->Viscos / VISCOS);
fprintf(f, "\n DIFFUSIVITY %-.6f", qual->Diffus / DIFFUS);
fprintf(f, "\n SPECIFIC GRAVITY %-.6f", hyd->SpGrav);
fprintf(f, "\n TRIALS %-d", hyd->MaxIter);
fprintf(f, "\n ACCURACY %-.8f", hyd->Hacc);
fprintf(f, "\n TOLERANCE %-.8f", qual->Ctol * pr->Ucf[QUALITY]);
fprintf(f, "\n CHECKFREQ %-d", hyd->CheckFreq);
fprintf(f, "\n MAXCHECK %-d", hyd->MaxCheck);
fprintf(f, "\n DAMPLIMIT %-.8f", hyd->DampLimit);
if (hyd->HeadErrorLimit > 0.0)
{
fprintf(f, "\n HEADERROR %-.8f",
hyd->HeadErrorLimit * pr->Ucf[HEAD]);
}
if (hyd->FlowChangeLimit > 0.0)
{
fprintf(f, "\n FLOWCHANGE %-.8f",
hyd->FlowChangeLimit * pr->Ucf[FLOW]);
}
if (hyd->DemandModel == PDA)
{
fprintf(f, "\n DEMAND MODEL PDA");
fprintf(f, "\n MINIMUM PRESSURE %-.4f", hyd->Pmin * pr->Ucf[PRESSURE]);
fprintf(f, "\n REQUIRED PRESSURE %-.4f", hyd->Preq * pr->Ucf[PRESSURE]);
fprintf(f, "\n PRESSURE EXPONENT %-.4f", hyd->Pexp);
}
// Write [REPORT] section
fprintf(f, "\n\n");
fprintf(f, s_REPORT);
// General options
fprintf(f, "\n PAGESIZE %d", rpt->PageSize);
fprintf(f, "\n STATUS %s", RptFlagTxt[rpt->Statflag]);
fprintf(f, "\n SUMMARY %s", RptFlagTxt[rpt->Summaryflag]);
fprintf(f, "\n ENERGY %s", RptFlagTxt[rpt->Energyflag]);
fprintf(f, "\n MESSAGES %s", RptFlagTxt[rpt->Messageflag]);
if (strlen(rpt->Rpt2Fname) > 0)
{
fprintf(f, "\n FILE %s", rpt->Rpt2Fname);
}
// Node reporting
switch (rpt->Nodeflag)
{
case 0:
fprintf(f, "\n NODES NONE");
break;
case 1:
fprintf(f, "\n NODES ALL");
break;
default:
j = 0;
for (i = 1; i <= net->Nnodes; i++)
{
node = &net->Node[i];
if (node->Rpt == 1)
{
if (j % 5 == 0) fprintf(f, "\n NODES ");
fprintf(f, "%s ", node->ID);
j++;
}
}
}
// Link reporting
switch (rpt->Linkflag)
{
case 0:
fprintf(f, "\n LINKS NONE");
break;
case 1:
fprintf(f, "\n LINKS ALL");
break;
default:
j = 0;
for (i = 1; i <= net->Nlinks; i++)
{
link = &net->Link[i];
if (link->Rpt == 1)
{
if (j % 5 == 0) fprintf(f, "\n LINKS ");
fprintf(f, "%s ", link->ID);
j++;
}
}
}
// Field formatting options
for (i = 0; i < FRICTION; i++)
{
SField *field = &rpt->Field[i];
if (field->Enabled == TRUE)
{
fprintf(f, "\n %-20sPRECISION %d", field->Name, field->Precision);
if (field->RptLim[LOW] < BIG)
{
fprintf(f, "\n %-20sBELOW %.6f", field->Name, field->RptLim[LOW]);
}
if (field->RptLim[HI] > -BIG)
{
fprintf(f, "\n %-20sABOVE %.6f", field->Name, field->RptLim[HI]);
}
}
else fprintf(f, "\n %-20sNO",field->Name);
}
fprintf(f, "\n\n");
// Write [COORDINATES] section
fprintf(f, "\n\n");
fprintf(f, s_COORDS);
for (i = 1; i <= net->Nnodes; i++)
{
node = &net->Node[i];
if (node->X == MISSING || node->Y == MISSING) continue;
fprintf(f, "\n %-31s %14.6f %14.6f", node->ID, node->X, node->Y);
}
fprintf(f, "\n\n");
// Save auxilary data to new input file
saveauxdata(parser, f);
// Close the new input file
fprintf(f, "\n");
fprintf(f, s_END);
fclose(f);
return 0;
}