920 lines
30 KiB
C
Executable File
920 lines
30 KiB
C
Executable File
/*
|
|
*******************************************************************
|
|
|
|
SMATRIX.C -- Sparse matrix routines for EPANET program.
|
|
|
|
VERSION: 2.00
|
|
DATE: 5/8/00
|
|
AUTHOR: L. Rossman
|
|
US EPA - NRMRL
|
|
|
|
This module contains the sparse matrix routines used to solve
|
|
a network's hydraulic equations. The entry points into this
|
|
module are:
|
|
createsparse() -- called from openhyd() in HYDRAUL.C
|
|
freesparse() -- called from closehyd() in HYDRAUL.C
|
|
linsolve() -- called from netsolve() in HYDRAUL.C
|
|
|
|
createsparse() does the following:
|
|
1. for each node, builds an adjacency list that identifies
|
|
all links connected to the node (see buildlists())
|
|
2. re-orders the network's nodes to minimize the number
|
|
of non-zero entries in the hydraulic solution matrix
|
|
(see reorder())
|
|
3. symbolically factorizes the solution matrix
|
|
(see factorize())
|
|
4. converts the adjacency lists into a compact scheme
|
|
for storing the non-zero coeffs. in the lower diagonal
|
|
portion of the solution matrix (see storesparse())
|
|
|
|
freesparse() frees the memory used for the sparse matrix.
|
|
|
|
linsolve() solves the linearized system of hydraulic equations.
|
|
|
|
********************************************************************
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#ifndef __APPLE__
|
|
#include <malloc.h>
|
|
#else
|
|
#include <stdlib.h>
|
|
#endif
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include <time.h>
|
|
|
|
#include "text.h"
|
|
#include "types.h"
|
|
#include "funcs.h"
|
|
|
|
// The multiple minimum degree re-ordering routine (see genmmd.c)
|
|
extern int genmmd(int *neqns, int *xadj, int *adjncy, int *invp, int *perm,
|
|
int *delta, int *dhead, int *qsize, int *llist, int *marker,
|
|
int *maxint, int *nofsub);
|
|
|
|
|
|
// Local functions
|
|
static int allocsparse(EN_Project *pr);
|
|
static int buildlists(EN_Project *pr, int);
|
|
static int paralink(EN_Project *pr, int, int, int);
|
|
static void xparalinks(EN_Project *pr);
|
|
static void freelists(EN_Project *pr);
|
|
static void countdegree(EN_Project *pr);
|
|
static int reordernodes(EN_Project *pr);
|
|
static int factorize(EN_Project *pr);
|
|
static int growlist(EN_Project *pr, int);
|
|
static int newlink(EN_Project *pr, Padjlist);
|
|
static int linked(EN_Network *net, int, int);
|
|
static int addlink(EN_Network *net, int, int, int);
|
|
static int storesparse(EN_Project *pr, int);
|
|
static int sortsparse(EN_Project *pr, int);
|
|
static void transpose(int, int *, int *, int *, int *,
|
|
int *, int *, int *);
|
|
|
|
|
|
/*************************************************************************
|
|
* Timer macros
|
|
**************************************************************************/
|
|
//#define cleartimer(tmr) (tmr = 0.0)
|
|
//#define starttimer(tmr) (tmr -= ((double) clock()/CLOCKS_PER_SEC));
|
|
//#define stoptimer(tmr) (tmr += ((double) clock()/CLOCKS_PER_SEC));
|
|
//#define gettimer(tmr) (tmr)
|
|
|
|
|
|
/*************************************************************************
|
|
* The following data type implements a timer
|
|
**************************************************************************/
|
|
// typedef double timer;
|
|
// timer SmatrixTimer;
|
|
|
|
|
|
int createsparse(EN_Project *pr)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: none
|
|
** Output: returns error code
|
|
** Purpose: creates sparse representation of coeff. matrix
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int errcode = 0;
|
|
|
|
EN_Network *net = &pr->network;
|
|
hydraulics_t *hyd = &pr->hydraulics;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
// cleartimer(SmatrixTimer);
|
|
// starttimer(SmatrixTimer);
|
|
|
|
|
|
/* Allocate data structures */
|
|
ERRCODE(allocsparse(pr));
|
|
|
|
if (errcode) {
|
|
return(errcode);
|
|
}
|
|
|
|
/* Build node-link adjacency lists with parallel links removed. */
|
|
solver->Degree = (int *) calloc(net->Nnodes+1, sizeof(int));
|
|
ERRCODE(MEMCHECK(solver->Degree));
|
|
ERRCODE(buildlists(pr, TRUE));
|
|
if (!errcode)
|
|
{
|
|
xparalinks(pr); // Remove parallel links
|
|
countdegree(pr); // Find degree of each junction
|
|
} // (= # of adjacent links)
|
|
|
|
// Re-order nodes to minimize number of non-zero coeffs.
|
|
// in factorized solution matrix.
|
|
hyd->Ncoeffs = net->Nlinks;
|
|
ERRCODE(reordernodes(pr));
|
|
|
|
// Factorize solution matrix by updating adjacency lists
|
|
// with non-zero connections due to fill-ins.
|
|
ERRCODE(factorize(pr));
|
|
|
|
// Allocate memory for sparse storage of positions of non-zero
|
|
// coeffs. and store these positions in vector NZSUB.
|
|
ERRCODE(storesparse(pr, net->Njuncs));
|
|
|
|
// Free memory used for adjacency lists and sort
|
|
// row indexes in NZSUB to optimize linsolve().
|
|
if (!errcode) {
|
|
freelists(pr);
|
|
}
|
|
ERRCODE(sortsparse(pr, net->Njuncs));
|
|
|
|
// Re-build adjacency lists without removing parallel
|
|
// links for use in future connectivity checking.
|
|
ERRCODE(buildlists(pr,FALSE));
|
|
|
|
// Free allocated memory
|
|
free(solver->Degree);
|
|
return(errcode);
|
|
} /* End of createsparse */
|
|
|
|
|
|
int allocsparse(EN_Project *pr)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: none
|
|
** Output: returns error code
|
|
** Purpose: allocates memory for indexing the solution matrix
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
EN_Network *net = &pr->network;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
int errcode = 0;
|
|
net->Adjlist = (Padjlist *) calloc(net->Nnodes+1, sizeof(Padjlist));
|
|
solver->Order = (int *) calloc(net->Nnodes+1, sizeof(int));
|
|
solver->Row = (int *) calloc(net->Nnodes+1, sizeof(int));
|
|
solver->Ndx = (int *) calloc(net->Nlinks+1, sizeof(int));
|
|
ERRCODE(MEMCHECK(net->Adjlist));
|
|
ERRCODE(MEMCHECK(solver->Order));
|
|
ERRCODE(MEMCHECK(solver->Row));
|
|
ERRCODE(MEMCHECK(solver->Ndx));
|
|
return(errcode);
|
|
}
|
|
|
|
|
|
void freesparse(EN_Project *pr)
|
|
/*
|
|
**----------------------------------------------------------------
|
|
** Input: None
|
|
** Output: None
|
|
** Purpose: Frees memory used for sparse matrix storage
|
|
**----------------------------------------------------------------
|
|
*/
|
|
{
|
|
EN_Network *net = &pr->network;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
// stoptimer(SmatrixTimer);
|
|
// printf("\n");
|
|
// printf("\n Processing Time = %7.3f s", gettimer(SmatrixTimer));
|
|
// printf("\n");
|
|
|
|
freelists(pr);
|
|
FREE(net->Adjlist);
|
|
FREE(solver->Order);
|
|
FREE(solver->Row);
|
|
FREE(solver->Ndx);
|
|
FREE(solver->XLNZ);
|
|
FREE(solver->NZSUB);
|
|
FREE(solver->LNZ);
|
|
} /* End of freesparse */
|
|
|
|
|
|
int buildlists(EN_Project *pr, int paraflag)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: paraflag = TRUE if list marks parallel links
|
|
** Output: returns error code
|
|
** Purpose: builds linked list of links adjacent to each node
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int i,j,k;
|
|
int pmark = 0;
|
|
int errcode = 0;
|
|
Padjlist alink;
|
|
|
|
EN_Network *net = &pr->network;
|
|
|
|
// For each link, update adjacency lists of its end nodes
|
|
for (k=1; k <= net->Nlinks; k++)
|
|
{
|
|
i = net->Link[k].N1;
|
|
j = net->Link[k].N2;
|
|
if (paraflag) {
|
|
pmark = paralink(pr, i, j, k); // Parallel link check
|
|
}
|
|
|
|
// Include link in start node i's list
|
|
alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist));
|
|
if (alink == NULL) return(101);
|
|
if (!pmark) alink->node = j;
|
|
else alink->node = 0; // Parallel link marker
|
|
alink->link = k;
|
|
alink->next = net->Adjlist[i];
|
|
net->Adjlist[i] = alink;
|
|
|
|
// Include link in end node j's list
|
|
alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist));
|
|
if (alink == NULL) return(101);
|
|
if (!pmark) alink->node = i;
|
|
else alink->node = 0; // Parallel link marker
|
|
alink->link = k;
|
|
alink->next = net->Adjlist[j];
|
|
net->Adjlist[j] = alink;
|
|
}
|
|
return(errcode);
|
|
} /* End of buildlists */
|
|
|
|
|
|
int paralink(EN_Project *pr, int i, int j, int k)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: i = index of start node of link
|
|
** j = index of end node of link
|
|
** k = link index
|
|
** Output: returns 1 if link k parallels another link, else 0
|
|
** Purpose: checks for parallel links between nodes i and j
|
|
**
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
Padjlist alink;
|
|
for (alink = pr->network.Adjlist[i]; alink != NULL; alink = alink->next)
|
|
{
|
|
// Link || to k (same end nodes)
|
|
if (alink->node == j)
|
|
{
|
|
// Assign Ndx entry to this link
|
|
pr->hydraulics.solver.Ndx[k] = alink->link;
|
|
return(1);
|
|
}
|
|
}
|
|
// Ndx entry if link not parallel
|
|
pr->hydraulics.solver.Ndx[k] = k;
|
|
return(0);
|
|
} /* End of paralink */
|
|
|
|
|
|
void xparalinks(EN_Project *pr)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: none
|
|
** Output: none
|
|
** Purpose: removes parallel links from nodal adjacency lists
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int i;
|
|
Padjlist alink, // Current item in adjacency list
|
|
blink; // Previous item in adjacency list
|
|
EN_Network *net = &pr->network;
|
|
|
|
// Scan adjacency list of each node
|
|
for (i=1; i <= net->Nnodes; i++)
|
|
{
|
|
alink = net->Adjlist[i]; // First item in list
|
|
blink = NULL;
|
|
while (alink != NULL)
|
|
{
|
|
if (alink->node == 0) // Parallel link marker found
|
|
{
|
|
if (blink == NULL) // This holds at start of list
|
|
{
|
|
net->Adjlist[i] = alink->next;
|
|
free(alink); // Remove item from list
|
|
alink = net->Adjlist[i];
|
|
}
|
|
else // This holds for interior of list
|
|
{
|
|
blink->next = alink->next;
|
|
free(alink); // Remove item from list
|
|
alink = blink->next;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
blink = alink; // Move to next item in list
|
|
alink = alink->next;
|
|
}
|
|
}
|
|
}
|
|
} /* End of xparalinks */
|
|
|
|
|
|
void freelists(EN_Project *pr)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: none
|
|
** Output: none
|
|
** Purpose: frees memory used for nodal adjacency lists
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int i;
|
|
Padjlist alink;
|
|
EN_Network *net = &pr->network;
|
|
|
|
|
|
for (i=0; i <= net->Nnodes; i++)
|
|
{
|
|
for (alink = net->Adjlist[i]; alink != NULL; alink = net->Adjlist[i])
|
|
{
|
|
net->Adjlist[i] = alink->next;
|
|
free(alink);
|
|
}
|
|
}
|
|
} /* End of freelists */
|
|
|
|
|
|
void countdegree(EN_Project *pr)
|
|
/*
|
|
**----------------------------------------------------------------
|
|
** Input: none
|
|
** Output: none
|
|
** Purpose: counts number of nodes directly connected to each node
|
|
**----------------------------------------------------------------
|
|
*/
|
|
{
|
|
int i;
|
|
Padjlist alink;
|
|
EN_Network *net = &pr->network;
|
|
|
|
memset(pr->hydraulics.solver.Degree, 0, (net->Nnodes+1) * sizeof(int));
|
|
|
|
// NOTE: For purposes of node re-ordering, Tanks (nodes with
|
|
// indexes above Njuncs) have zero degree of adjacency.
|
|
|
|
for (i=1; i <= net->Njuncs; i++) {
|
|
for (alink = net->Adjlist[i]; alink != NULL; alink = alink->next) {
|
|
if (alink->node > 0) {
|
|
pr->hydraulics.solver.Degree[i]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int reordernodes(EN_Project *pr)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: none
|
|
** Output: returns 1 if successful, 0 if not
|
|
** Purpose: re-orders nodes to minimize # of non-zeros that
|
|
** will appear in factorized solution matrix
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int k, knode, m, njuncs, nlinks;
|
|
int delta = -1;
|
|
int nofsub = 0;
|
|
int maxint = INT_MAX; //defined in limits.h
|
|
int errcode;
|
|
|
|
EN_Network *net = &pr->network;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
Padjlist alink;
|
|
|
|
// Local versions of node adjacency lists
|
|
int *adjncy = NULL;
|
|
int *xadj = NULL;
|
|
|
|
// Work arrays
|
|
int *dhead = NULL;
|
|
int *qsize = NULL;
|
|
int *llist = NULL;
|
|
int *marker = NULL;
|
|
|
|
// Default ordering
|
|
for (k=1; k <= net->Nnodes; k++)
|
|
{
|
|
solver->Row[k] = k;
|
|
solver->Order[k] = k;
|
|
}
|
|
njuncs = net->Njuncs;
|
|
nlinks = net->Nlinks;
|
|
|
|
// Allocate memory
|
|
adjncy = (int *) calloc(2*nlinks+1, sizeof(int));
|
|
xadj = (int *) calloc(njuncs+2, sizeof(int));
|
|
dhead = (int *) calloc(njuncs+1, sizeof(int));
|
|
qsize = (int *) calloc(njuncs + 1, sizeof(int));
|
|
llist = (int *) calloc(njuncs + 1, sizeof(int));
|
|
marker = (int *) calloc(njuncs + 1, sizeof(int));
|
|
if (adjncy && xadj && dhead && qsize && llist && marker)
|
|
{
|
|
// Create local versions of node adjacency lists
|
|
xadj[1] = 1;
|
|
m = 1;
|
|
for (k = 1; k <= njuncs; k++)
|
|
{
|
|
for (alink = net->Adjlist[k]; alink != NULL; alink = alink->next)
|
|
{
|
|
knode = alink->node;
|
|
if (knode <= njuncs)
|
|
{
|
|
adjncy[m] = knode;
|
|
m++;
|
|
}
|
|
}
|
|
xadj[k+1] = m;
|
|
}
|
|
|
|
// Generate a multiple minimum degree node re-ordering
|
|
genmmd(&njuncs, xadj, adjncy, solver->Row, solver->Order, &delta,
|
|
dhead, qsize, llist, marker, &maxint, &nofsub);
|
|
errcode = 0;
|
|
}
|
|
else errcode = 101; //insufficient memory
|
|
|
|
// Free memory
|
|
FREE(adjncy);
|
|
FREE(xadj);
|
|
FREE(dhead);
|
|
FREE(qsize);
|
|
FREE(llist);
|
|
FREE(marker);
|
|
return errcode;
|
|
} /* End of reordernodes */
|
|
|
|
|
|
int factorize(EN_Project *pr)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: none
|
|
** Output: returns error code
|
|
** Purpose: symbolically factorizes the solution matrix in
|
|
** terms of its adjacency lists
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int k, knode;
|
|
int errcode = 0;
|
|
EN_Network *net = &pr->network;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
// Augment each junction's adjacency list to account for
|
|
// new connections created when solution matrix is solved.
|
|
// NOTE: Only junctions (indexes <= Njuncs) appear in solution matrix.
|
|
for (k = 1; k <= net->Njuncs; k++) // Examine each junction
|
|
{
|
|
knode = solver->Order[k]; // Re-ordered index
|
|
if (!growlist(pr, knode)) // Augment adjacency list
|
|
{
|
|
errcode = 101;
|
|
break;
|
|
}
|
|
solver->Degree[knode] = 0; // In-activate node
|
|
}
|
|
return(errcode);
|
|
} /* End of factorize */
|
|
|
|
|
|
int growlist(EN_Project *pr, int knode)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: knode = node index
|
|
** Output: returns 1 if successful, 0 if not
|
|
** Purpose: creates new entries in knode's adjacency list for
|
|
** all unlinked pairs of active nodes that are
|
|
** adjacent to knode
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int node;
|
|
Padjlist alink;
|
|
EN_Network *net = &pr->network;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
// Iterate through all nodes connected to knode
|
|
for (alink = net->Adjlist[knode]; alink != NULL; alink = alink -> next)
|
|
{
|
|
node = alink->node; // End node of connecting link
|
|
if (solver->Degree[node] > 0) // End node is active
|
|
{
|
|
solver->Degree[node]--; // Reduce degree of adjacency
|
|
if (!newlink(pr, alink)) { // Add to adjacency list
|
|
return(0);
|
|
}
|
|
}
|
|
}
|
|
return(1);
|
|
} /* End of growlist */
|
|
|
|
|
|
int newlink(EN_Project *pr, Padjlist alink)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: alink = element of node's adjacency list
|
|
** Output: returns 1 if successful, 0 if not
|
|
** Purpose: links end of current adjacent link to end nodes of
|
|
** all links that follow it on adjacency list
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int inode, jnode;
|
|
Padjlist blink;
|
|
EN_Network *net = &pr->network;
|
|
hydraulics_t *hyd = &pr->hydraulics;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
// Scan all entries in adjacency list that follow anode.
|
|
inode = alink->node; // End node of connection to anode
|
|
for (blink = alink->next; blink != NULL; blink = blink->next)
|
|
{
|
|
jnode = blink->node; // End node of next connection
|
|
|
|
// If jnode still active, and inode not connected to jnode,
|
|
// then add a new connection between inode and jnode.
|
|
if (solver->Degree[jnode] > 0) // jnode still active
|
|
{
|
|
if (!linked(net, inode, jnode)) // inode not linked to jnode
|
|
{
|
|
// Since new connection represents a non-zero coeff.
|
|
// in the solution matrix, update the coeff. count.
|
|
hyd->Ncoeffs++;
|
|
|
|
// Update adjacency lists for inode & jnode to
|
|
// reflect the new connection.
|
|
if (!addlink(net, inode, jnode, hyd->Ncoeffs)) return(0);
|
|
if (!addlink(net, jnode, inode, hyd->Ncoeffs)) return(0);
|
|
solver->Degree[inode]++;
|
|
solver->Degree[jnode]++;
|
|
}
|
|
}
|
|
}
|
|
return(1);
|
|
} /* End of newlink */
|
|
|
|
|
|
int linked(EN_Network *n, int i, int j)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: i = node index
|
|
** j = node index
|
|
** Output: returns 1 if nodes i and j are linked, 0 if not
|
|
** Purpose: checks if nodes i and j are already linked.
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
Padjlist alink;
|
|
for (alink = n->Adjlist[i]; alink != NULL; alink = alink->next)
|
|
{
|
|
if (alink->node == j) return(1);
|
|
}
|
|
return(0);
|
|
} /* End of linked */
|
|
|
|
|
|
int addlink(EN_Network *net, int i, int j, int n)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: i = node index
|
|
** j = node index
|
|
** n = link index
|
|
** Output: returns 1 if successful, 0 if not
|
|
** Purpose: augments node i's adjacency list with node j
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
Padjlist alink;
|
|
alink = (struct Sadjlist *) malloc(sizeof(struct Sadjlist));
|
|
if (alink == NULL) return(0);
|
|
alink->node = j;
|
|
alink->link = n;
|
|
alink->next = net->Adjlist[i];
|
|
net->Adjlist[i] = alink;
|
|
return(1);
|
|
} /* End of addlink */
|
|
|
|
|
|
int storesparse(EN_Project *pr, int n)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: n = number of rows in solution matrix
|
|
** Output: returns error code
|
|
** Purpose: stores row indexes of non-zeros of each column of
|
|
** lower triangular portion of factorized matrix
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
Padjlist alink;
|
|
int i, ii, j, k, l, m;
|
|
int errcode = 0;
|
|
|
|
EN_Network *net = &pr->network;
|
|
hydraulics_t *hyd = &pr->hydraulics;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
/* Allocate sparse matrix storage */
|
|
solver->XLNZ = (int *) calloc(n+2, sizeof(int));
|
|
solver->NZSUB = (int *) calloc(hyd->Ncoeffs+2, sizeof(int));
|
|
solver->LNZ = (int *) calloc(hyd->Ncoeffs+2, sizeof(int));
|
|
ERRCODE(MEMCHECK(solver->XLNZ));
|
|
ERRCODE(MEMCHECK(solver->NZSUB));
|
|
ERRCODE(MEMCHECK(solver->LNZ));
|
|
if (errcode) return(errcode);
|
|
|
|
// Generate row index pointers for each column of matrix
|
|
k = 0;
|
|
solver->XLNZ[1] = 1;
|
|
for (i=1; i<=n; i++) // column
|
|
{
|
|
m = 0;
|
|
ii = solver->Order[i];
|
|
for (alink = net->Adjlist[ii]; alink != NULL; alink = alink->next)
|
|
{
|
|
j = solver->Row[alink->node]; // row
|
|
l = alink->link;
|
|
if (j > i && j <= n)
|
|
{
|
|
m++;
|
|
k++;
|
|
solver->NZSUB[k] = j;
|
|
solver->LNZ[k] = l;
|
|
}
|
|
}
|
|
solver->XLNZ[i+1] = solver->XLNZ[i] + m;
|
|
}
|
|
return(errcode);
|
|
} /* End of storesparse */
|
|
|
|
|
|
int sortsparse(EN_Project *pr, int n)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: n = number of rows in solution matrix
|
|
** Output: returns eror code
|
|
** Purpose: puts row indexes in ascending order in NZSUB
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
int i, k;
|
|
int *xlnzt, *nzsubt, *lnzt, *nzt;
|
|
int errcode = 0;
|
|
|
|
hydraulics_t *hyd = &pr->hydraulics;
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
|
|
int *LNZ = solver->LNZ;
|
|
int *XLNZ = solver->XLNZ;
|
|
int *NZSUB = solver->NZSUB;
|
|
|
|
xlnzt = (int *) calloc(n+2, sizeof(int));
|
|
nzsubt = (int *) calloc(hyd->Ncoeffs+2, sizeof(int));
|
|
lnzt = (int *) calloc(hyd->Ncoeffs+2, sizeof(int));
|
|
nzt = (int *) calloc(n+2, sizeof(int));
|
|
ERRCODE(MEMCHECK(xlnzt));
|
|
ERRCODE(MEMCHECK(nzsubt));
|
|
ERRCODE(MEMCHECK(lnzt));
|
|
ERRCODE(MEMCHECK(nzt));
|
|
if (!errcode)
|
|
{
|
|
// Count # non-zeros in each row
|
|
for (i=1; i<=n; i++) nzt[i] = 0;
|
|
for (i=1; i<=n; i++)
|
|
{
|
|
for (k = XLNZ[i]; k < XLNZ[i+1]; k++) nzt[NZSUB[k]]++;
|
|
}
|
|
xlnzt[1] = 1;
|
|
for (i=1; i<=n; i++) xlnzt[i+1] = xlnzt[i] + nzt[i];
|
|
|
|
// Transpose matrix twice to order column indexes
|
|
transpose(n, XLNZ, NZSUB, LNZ, xlnzt, nzsubt, lnzt, nzt);
|
|
transpose(n, xlnzt, nzsubt, lnzt, XLNZ, NZSUB, LNZ, nzt);
|
|
}
|
|
|
|
// Reclaim memory
|
|
FREE(xlnzt);
|
|
FREE(nzsubt);
|
|
FREE(lnzt);
|
|
FREE(nzt);
|
|
return(errcode);
|
|
} /* End of sortsparse */
|
|
|
|
|
|
void transpose(int n, int *il, int *jl, int *xl, int *ilt, int *jlt,
|
|
int *xlt, int *nzt)
|
|
/*
|
|
**---------------------------------------------------------------------
|
|
** Input: n = matrix order
|
|
** il,jl,xl = sparse storage scheme for original matrix
|
|
** nzt = work array
|
|
** Output: ilt,jlt,xlt = sparse storage scheme for transposed matrix
|
|
** Purpose: Determines sparse storage scheme for transpose of a matrix
|
|
**---------------------------------------------------------------------
|
|
*/
|
|
{
|
|
int i, j, k, kk;
|
|
|
|
for (i=1; i<=n; i++) nzt[i] = 0;
|
|
for (i=1; i<=n; i++)
|
|
{
|
|
for (k=il[i]; k<il[i+1]; k++)
|
|
{
|
|
j = jl[k];
|
|
kk = ilt[j] + nzt[j];
|
|
jlt[kk] = i;
|
|
xlt[kk] = xl[k];
|
|
nzt[j]++;
|
|
}
|
|
}
|
|
} /* End of transpose */
|
|
|
|
|
|
int linsolve(EN_Project *pr, int n)
|
|
/*
|
|
**--------------------------------------------------------------
|
|
** Input: s = solver struct
|
|
n = number of equations
|
|
** Output: s->F = solution values
|
|
** returns 0 if solution found, or index of
|
|
** equation causing system to be ill-conditioned
|
|
** Purpose: solves sparse symmetric system of linear
|
|
** equations using Cholesky factorization
|
|
**
|
|
** NOTE: This procedure assumes that the solution matrix has
|
|
** been symbolically factorized with the positions of
|
|
** the lower triangular, off-diagonal, non-zero coeffs.
|
|
** stored in the following integer arrays:
|
|
** XLNZ (start position of each column in NZSUB)
|
|
** NZSUB (row index of each non-zero in each column)
|
|
** LNZ (position of each NZSUB entry in Aij array)
|
|
**
|
|
** This procedure has been adapted from subroutines GSFCT and
|
|
** GSSLV in the book "Computer Solution of Large Sparse
|
|
** Positive Definite Systems" by A. George and J. W-H Liu
|
|
** (Prentice-Hall, 1981).
|
|
**--------------------------------------------------------------
|
|
*/
|
|
{
|
|
solver_t *solver = &pr->hydraulics.solver;
|
|
double *Aii = solver->Aii;
|
|
double *Aij = solver->Aij;
|
|
double *B = solver->F;
|
|
int *LNZ = solver->LNZ;
|
|
int *XLNZ = solver->XLNZ;
|
|
int *NZSUB = solver->NZSUB;
|
|
|
|
int *link, *first;
|
|
int i, istop, istrt, isub, j, k, kfirst, newk;
|
|
int errcode = 0;
|
|
double bj, diagj, ljk;
|
|
double *temp;
|
|
|
|
temp = (double *) calloc(n+1, sizeof(double));
|
|
link = (int *) calloc(n+1,sizeof(int));
|
|
first = (int *) calloc(n+1,sizeof(int));
|
|
ERRCODE(MEMCHECK(temp));
|
|
ERRCODE(MEMCHECK(link));
|
|
ERRCODE(MEMCHECK(first));
|
|
if (errcode)
|
|
{
|
|
errcode = -errcode;
|
|
goto ENDLINSOLVE;
|
|
}
|
|
memset(temp,0,(n+1)*sizeof(double));
|
|
memset(link,0,(n+1)*sizeof(int));
|
|
|
|
/* Begin numerical factorization of matrix A into L */
|
|
/* Compute column L(*,j) for j = 1,...n */
|
|
for (j=1; j<=n; j++)
|
|
{
|
|
/* For each column L(*,k) that affects L(*,j): */
|
|
diagj = 0.0;
|
|
newk = link[j];
|
|
k = newk;
|
|
while (k != 0)
|
|
{
|
|
|
|
/* Outer product modification of L(*,j) by */
|
|
/* L(*,k) starting at first[k] of L(*,k). */
|
|
newk = link[k];
|
|
kfirst = first[k];
|
|
ljk = Aij[LNZ[kfirst]];
|
|
diagj += ljk*ljk;
|
|
istrt = kfirst + 1;
|
|
istop = XLNZ[k+1] - 1;
|
|
if (istop >= istrt)
|
|
{
|
|
|
|
/* Before modification, update vectors 'first' */
|
|
/* and 'link' for future modification steps. */
|
|
first[k] = istrt;
|
|
isub = NZSUB[istrt];
|
|
link[k] = link[isub];
|
|
link[isub] = k;
|
|
|
|
/* The actual mod is saved in vector 'temp'. */
|
|
for (i=istrt; i<=istop; i++)
|
|
{
|
|
isub = NZSUB[i];
|
|
temp[isub] += Aij[LNZ[i]]*ljk;
|
|
}
|
|
}
|
|
k = newk;
|
|
}
|
|
|
|
/* Apply the modifications accumulated */
|
|
/* in 'temp' to column L(*,j). */
|
|
diagj = Aii[j] - diagj;
|
|
if (diagj <= 0.0) /* Check for ill-conditioning */
|
|
{
|
|
errcode = j;
|
|
goto ENDLINSOLVE;
|
|
}
|
|
diagj = sqrt(diagj);
|
|
Aii[j] = diagj;
|
|
istrt = XLNZ[j];
|
|
istop = XLNZ[j+1] - 1;
|
|
if (istop >= istrt)
|
|
{
|
|
first[j] = istrt;
|
|
isub = NZSUB[istrt];
|
|
link[j] = link[isub];
|
|
link[isub] = j;
|
|
for (i=istrt; i<=istop; i++)
|
|
{
|
|
isub = NZSUB[i];
|
|
bj = (Aij[LNZ[i]] - temp[isub])/diagj;
|
|
Aij[LNZ[i]] = bj;
|
|
temp[isub] = 0.0;
|
|
}
|
|
}
|
|
} /* next j */
|
|
|
|
/* Foward substitution */
|
|
for (j=1; j<=n; j++)
|
|
{
|
|
bj = B[j]/Aii[j];
|
|
B[j] = bj;
|
|
istrt = XLNZ[j];
|
|
istop = XLNZ[j+1] - 1;
|
|
if (istop >= istrt)
|
|
{
|
|
for (i=istrt; i<=istop; i++)
|
|
{
|
|
isub = NZSUB[i];
|
|
B[isub] -= Aij[LNZ[i]]*bj;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Backward substitution */
|
|
for (j=n; j>=1; j--)
|
|
{
|
|
bj = B[j];
|
|
istrt = XLNZ[j];
|
|
istop = XLNZ[j+1] - 1;
|
|
if (istop >= istrt)
|
|
{
|
|
for (i=istrt; i<=istop; i++)
|
|
{
|
|
isub = NZSUB[i];
|
|
bj -= Aij[LNZ[i]]*B[isub];
|
|
}
|
|
}
|
|
B[j] = bj/Aii[j];
|
|
}
|
|
|
|
ENDLINSOLVE:
|
|
free(temp);
|
|
free(link);
|
|
free(first);
|
|
return(errcode);
|
|
} /* End of linsolve */
|
|
|
|
|
|
/************************ END OF SMATRIX.C ************************/
|
|
|