Files
EPANET/src/validate.c
Lew Rossman c24f334208 Update validate.c
Fixes false negative when checking if a tank's min/max levels fall within its volume curve (see issue #767 ).
2024-03-19 14:38:47 -04:00

409 lines
12 KiB
C

/*
******************************************************************************
Project: OWA EPANET
Version: 2.3
Module: validate.c
Description: validates project data
Authors: see AUTHORS
Copyright: see AUTHORS
License: see LICENSE
Last Updated: 03/18/2024
******************************************************************************
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "types.h"
#include "funcs.h"
#include "text.h"
// Exported functions
int validateproject(Project *);
void reindextanks(Project *);
int validatetanks(Project *pr)
/*
**-------------------------------------------------------------------
** Input: none
** Output: returns 1 if successful, 0 if not
** Purpose: checks for valid tank levels.
**-------------------------------------------------------------------
*/
{
Network *net = &pr->network;
int i, j, n, result = 1, levelerr;
char errmsg[MAXMSG+1] = "";
Stank *tank;
Scurve *curve;
double elev;
for (j = 1; j <= net->Ntanks; j++)
{
tank = &net->Tank[j];
if (tank->A == 0.0) continue; // Skip reservoirs
// Check for valid lower/upper tank levels
levelerr = 0;
if (tank->H0 > tank->Hmax ||
tank->Hmin > tank->Hmax ||
tank->H0 < tank->Hmin
) levelerr = 1;
// Check that tank heights are within volume curve
elev = net->Node[tank->Node].El;
i = tank->Vcurve;
if (i > 0)
{
curve = &net->Curve[i];
n = curve->Npts - 1;
if ((tank->Hmin - elev) * pr->Ucf[ELEV] < curve->X[0] - TINY ||
(tank->Hmax - elev) * pr->Ucf[ELEV] > curve->X[n] + TINY)
{
levelerr = 1;
}
}
// Report error in levels if found
if (levelerr)
{
sprintf(pr->Msg, "Error 225: %s node %s", geterrmsg(225, errmsg),
net->Node[tank->Node].ID);
writeline(pr, pr->Msg);
result = 0;
}
}
return result;
}
int validatepatterns(Project *pr)
/*
**-------------------------------------------------------------------
** Input: none
** Output: returns 1 if successful, 0 if not
** Purpose: checks if time patterns have data.
**-------------------------------------------------------------------
*/
{
Network *net = &pr->network;
int j, result = 1;
char errmsg[MAXMSG+1] = "";
if (pr->network.Pattern != NULL)
{
for (j = 0; j <= pr->network.Npats; j++)
{
if (pr->network.Pattern[j].Length == 0)
{
sprintf(pr->Msg, "Error 232: %s %s", geterrmsg(232, errmsg),
pr->network.Pattern[j].ID);
writeline(pr, pr->Msg);
result = 0;
}
}
}
return result;
}
int validatecurves(Project *pr)
/*
**-------------------------------------------------------------------
** Input: none
** Output: returns 1 if successful, 0 if not
** Purpose: checks if data curves have data.
**-------------------------------------------------------------------
*/
{
int i, j, npts, result = 1;
char errmsg[MAXMSG+1] = "";
Scurve *curve;
if (pr->network.Curve != NULL)
{
for (j = 1; j <= pr->network.Ncurves; j++)
{
// Check that curve has data
curve = &pr->network.Curve[j];
npts = curve->Npts;
if (npts == 0)
{
sprintf(pr->Msg, "Error 231: %s %s", geterrmsg(231, errmsg),
curve->ID);
writeline(pr, pr->Msg);
result = 0;
}
// Check that x values are increasing
for (i = 1; i < npts; i++)
{
if (curve->X[i-1] >= curve->X[i])
{
sprintf(pr->Msg, "Error 230: %s %s", geterrmsg(230, errmsg),
curve->ID);
writeline(pr, pr->Msg);
result = 0;
break;
}
}
}
}
return result;
}
int powerfuncpump(double h0, double h1, double h2, double q1, double q2,
double *a, double *b, double *c)
/*
**---------------------------------------------------------
** Input: h0 = shutoff head
** h1 = design head
** h2 = head at max. flow
** q1 = design flow
** q2 = max. flow
** Output: *a, *b, *c = pump curve coeffs. (H = a-bQ^c),
** Returns 1 if sucessful, 0 otherwise.
** Purpose: computes coeffs. for a power function pump curve
**----------------------------------------------------------
*/
{
double h4, h5;
if (h0 < TINY || h0 - h1 < TINY || h1 - h2 < TINY ||
q1 < TINY || q2 - q1 < TINY
) return 0;
*a = h0;
h4 = h0 - h1;
h5 = h0 - h2;
*c = log(h5 / h4) / log(q2 / q1);
if (*c <= 0.0 || *c > 20.0) return 0;
*b = -h4 / pow(q1, *c);
if (*b >= 0.0) return 0;
return 1;
}
int customcurvepump(Project *pr, Spump *pump, Scurve *curve)
/*
**-------------------------------------------------------------------
** Input: pump = a pump object
** curve = a data curve object
** Output: returns an error code
** Purpose: computes properties for a pump with a custom pump curve.
**-------------------------------------------------------------------
*/
{
int m, npts = curve->Npts;
pump->Ptype = CUSTOM;
for (m = 1; m < npts; m++)
{
// Curve must have continuously decreasing head (the Y value)
if (curve->Y[m] >= curve->Y[m - 1])
{
pump->Ptype = NOCURVE;
return 227;
}
}
pump->Qmax = curve->X[npts - 1];
pump->Q0 = (curve->X[0] + pump->Qmax) / 2.0 / pr->Ucf[FLOW];
pump->Qmax /= pr->Ucf[FLOW];
pump->Hmax = curve->Y[0] / pr->Ucf[HEAD];
return 0;
}
int pumpcurvepump(Project *pr, Spump *pump, Scurve *curve)
/*
**-------------------------------------------------------------------
** Input: pump = a pump object
** curve = a data curve object
** Output: returns an error code
** Purpose: computes properties for a pump assigned a pump curve.
**-------------------------------------------------------------------
*/
{
double a, b, c, h0 = 0.0, h1 = 0.0, h2 = 0.0, q1 = 0.0, q2 = 0.0;
int npts = curve->Npts;
curve->Type = PUMP_CURVE;
// Generic power function curve
if (npts == 1)
{
pump->Ptype = POWER_FUNC;
q1 = curve->X[0];
h1 = curve->Y[0];
h0 = 1.33334 * h1;
q2 = 2.0 * q1;
h2 = 0.0;
}
// 3 point curve with shutoff head
else if (npts == 3 && curve->X[0] == 0.0)
{
pump->Ptype = POWER_FUNC;
h0 = curve->Y[0];
q1 = curve->X[1];
h1 = curve->Y[1];
q2 = curve->X[2];
h2 = curve->Y[2];
}
else return customcurvepump(pr, pump, curve);
// Compute shape factors & limits of power function curves
if (!powerfuncpump(h0, h1, h2, q1, q2, &a, &b, &c))
{
pump->Ptype = NOCURVE;
return 227;
}
else
{
pump->H0 = -a / pr->Ucf[HEAD];
pump->R = -b * (pow(pr->Ucf[FLOW], c) / pr->Ucf[HEAD]);
pump->N = c;
pump->Q0 = q1 / pr->Ucf[FLOW];
pump->Qmax = pow((-a / b), (1.0 / c)) / pr->Ucf[FLOW];
pump->Hmax = h0 / pr->Ucf[HEAD];
}
return 0;
}
int constpowerpump(Project *pr, Spump *pump)
/*
**-------------------------------------------------------------------
** Input: pump = a pump object
** Output: returns an error code
** Purpose: computes properties for a constant power pump.
**-------------------------------------------------------------------
*/
{
pump->Ptype = CONST_HP;
pump->H0 = 0.0;
pump->R = -8.814 * pr->network.Link[pump->Link].Km / pr->Ucf[POWER];
pump->N = -1.0;
pump->Hmax = BIG; // No head limit
pump->Qmax = BIG; // No flow limit
pump->Q0 = 1.0; // Init. flow = 1 cfs
return 0;
}
int validatepumps(Project *pr)
/*
**-------------------------------------------------------------------
** Input: none
** Output: returns 1 if successful, 0 if not
** Purpose: checks if pumps are assigned valid pump curve data.
**-------------------------------------------------------------------
*/
{
Network *net = &pr->network;
int i, errcode, result = 1;
char errmsg[MAXMSG+1] = "";
Spump *pump;
for (i = 1; i <= net->Npumps; i++)
{
// Pump has a designated pump curve
pump = &net->Pump[i];
if (pump->Hcurve > 0)
errcode = pumpcurvepump(pr, pump, &net->Curve[pump->Hcurve]);
// Pump has a constant power setting
else if (net->Link[pump->Link].Km > 0.0)
errcode = constpowerpump(pr, pump);
// Pump has no pump curve info assigned
else
{
pump->Ptype = NOCURVE;
errcode = 226;
}
if (errcode)
{
sprintf(pr->Msg, "Error %d: %s %s",
errcode, geterrmsg(errcode, errmsg), net->Link[pump->Link].ID);
writeline(pr, pr->Msg);
result = 0;
}
}
return result;
}
int validateproject(Project *pr)
/*
*--------------------------------------------------------------
* Input: none
* Output: returns error code
* Purpose: checks for valid network data.
*--------------------------------------------------------------
*/
{
int errcode = 0;
if (pr->network.Nnodes < 2) return 223;
if (pr->network.Ntanks == 0) return 224;
if (!validatetanks(pr)) errcode = 110;
if (!validatepumps(pr)) errcode = 110;
if (!validatepatterns(pr)) errcode = 110;
if (!validatecurves(pr)) errcode = 110;
return errcode;
}
void reindextanks(Project *pr)
/*
*--------------------------------------------------------------
* Input: none
* Output: none
* Purpose: adjusts tank node indexes when the number of
* junctions created from an input file is less than
* the total number of junction lines in the file.
*--------------------------------------------------------------
*/
{
Network *net = &pr->network;
Parser *parser = &pr->parser;
Quality *qual = &pr->quality;
Scontrol *control;
int i, j, ndiff, n1, n2, size;
// ndiff = # unused entries in Node array before first tank node
ndiff = parser->MaxJuncs - net->Njuncs;
if (ndiff > 0)
{
for (i = 1; i <= net->Ntanks; ++i)
{
// n1 is current tank index in Node array, n2 is adjusted index
n1 = net->Tank[i].Node;
n2 = n1 - ndiff;
// Update the tank node's hash table entry
hashtable_update(net->NodeHashTable, net->Node[n1].ID, n2);
// Update the tank's node index
net->Tank[i].Node = n2;
// Re-position tank node in Node array
net->Node[n2] = net->Node[n1];
// Replace all references to old tank node index with new one
for (j = 1; j <= net->Nlinks; ++j)
{
if (net->Link[j].N1 == n1) net->Link[j].N1 = n2;
if (net->Link[j].N2 == n1) net->Link[j].N2 = n2;
}
for (j = 1; j <= net->Ncontrols; ++j)
{
control = &net->Control[j];
if (control->Node == n1) control->Node = n2;
}
adjusttankrules(pr, -ndiff);
if (qual->TraceNode == n1) qual->TraceNode = n2;
}
// Reallocate the Node array (shouldn't fail as new size < old size)
parser->MaxJuncs = net->Njuncs;
parser->MaxNodes = net->Njuncs + net->Ntanks;
size = (net->Nnodes + 2) * sizeof(Snode);
net->Node = (Snode *)realloc(net->Node, size);
}
}