Files
EPANET/src/lemontiger.c
Sam Hatchett e5eeccbd1e apple define, some cleanup
- apple / *nix defines out the DLL[EX/IM]PORT directives
- we should be using dox markup (see ENrunnexHQ for example)
2013-01-31 15:30:07 -05:00

288 lines
7.8 KiB
C

#include "types.h"
#include "vars.h"
#include "funcs.h"
#include "toolkit.h"
extern char OutOfMemory;
extern int Haltflag;
int DLLEXPORT ENopeninitHQ() {
int errcode = 0;
if (Hstep % Qstep) {
errcode = 401;
errmsg(errcode);
return errcode;
}
Statflag = TRUE; //disable status report
if (errcode = ENopenH()) return errcode;
// Open WQ solver, but don't check SaveHflag as in ENopenQ()
ERRCODE(openqual());
if (!errcode) OpenQflag = TRUE;
else {
errmsg(errcode);
return errcode;
}
if (errcode = ENinitH(1)) return errcode;
if (errcode = ENinitQ(0)) return errcode;
Rtime = Rstep; //use ENinitH()'s setup
return errcode;
}
long timestepLT();
/* computes the length of the time step to next hydraulic simulation, but don't
update tank volumne and tank levels. During a sync HQ simulation,
nextqual() will update the tank vols */
int nexthydLT(long *tstep);
/* finds length of next time step but don't save
results to hydraulics file. ignore reporting functions. */
void updateTanklevels();
//Prior to running hydraulic simulation, update the tank levels.
/*!
\fn int ENrunnexHQ( long* simTimePtr, long* timeStepPtr )
\brief equivalent of ENnextQ, hydraulic solver is called on-demand
\param simTimePtr Simulation time (output variable).
\param timeStepPtr Time to next time step boundary (output variable).
\return on error, an error code
*/
int DLLEXPORT ENrunnextHQ(long* simTimePtr, long* timeStepPtr) {
/* The lemonTiger equivalent of ENnextQ, hydraulic solver is called on-demand*/
long hydtime; /* Hydraulic solution time */
long hydstep; /* Hydraulic time step */
int errcode = 0;
/* if needed, push forward hydraulic simulation, similar to runqual() */
if (Qtime == Htime)
{
if ( (errcode = runhyd(&hydtime)) || (errcode = nexthydLT(&hydstep)) ) {
return errcode;
}
/* If simulating WQ: */
if (Qualflag != NONE && Qtime < Dur) {
/* Compute reaction rate coeffs. */
if (Reactflag && Qualflag != AGE) ratecoeffs();
/* Initialize pipe segments (at time 0) or */
/* else re-orient segments if flow reverses.*/
if (Qtime == 0) initsegs();
else reorientsegs();
}
Htime = hydtime + hydstep;
}
*simTimePtr = Htime;
hydstep = Htime - Qtime;
/* Perform water quality routing over this time step */
if (Qualflag != NONE && hydstep > 0) transport(hydstep);
updateTanklevels();
/* Update current time */
if (OutOfMemory) errcode = 101;
if (!errcode) *timeStepPtr = hydstep;
Qtime += hydstep;
/* Save final output if no more time steps */
if (!errcode && Saveflag && *timeStepPtr == 0) errcode = savefinaloutput();
return(errcode);
}
int DLLEXPORT ENrunstepHQ(long* pstime /* Simulation time pointer */
,long* ptleft /* Time left in the simulation*/) {
/* The LemonTiger equivalence of ENstepQ, hydraulic solver is called on-demand */
long hydtime; /* Hydraulic solution time */
long hydstep; /* Hydraulic time step */
int errcode = 0;
long dt, hstep, tstep;
/* if needed, push forward hydraulic simulation, similar to runqual() */
if (Qtime == Htime)
{
if ( (errcode = runhyd(&hydtime)) ||
(errcode = nexthydLT(&hydstep))
) return errcode;
/* If simulating WQ: */
if (Qualflag != NONE && Qtime < Dur) {
/* Compute reaction rate coeffs. */
if (Reactflag && Qualflag != AGE) ratecoeffs();
/* Initialize pipe segments (at time 0) or */
/* else re-orient segments if flow reverses.*/
if (Qtime == 0) initsegs();
else reorientsegs();
}
Htime = hydtime + hydstep;
}
/* run WQ simulation, similar to stepqual() */
tstep = Qstep;
do {
dt = tstep;
hstep = Htime - Qtime;
if (hstep < dt) {/* Htime is closer */
dt = hstep;
if (Qualflag != NONE) transport(dt);
Qtime += dt;
updateTanklevels();
/* if needed, push forward hydraulic simulation */
if ( (errcode = runhyd(&hydtime)) ||
(errcode = nexthydLT(&hydstep))
) return errcode;
if (Qualflag != NONE && Qtime < Dur) {
/* Compute reaction rate coeffs. */
if (Reactflag && Qualflag != AGE) ratecoeffs();
/* Initialize pipe segments (at time 0) or */
/* else re-orient segments if flow reverses.*/
if (Qtime == 0) initsegs();
else reorientsegs();
}
Htime = hydtime + hydstep;
Qtime = hydtime;
} else { /* Qtime is closer */
if (Qualflag != NONE) transport(dt);
Qtime += dt;
}
tstep -= dt;
if (OutOfMemory) errcode = 101;
} while (!errcode && tstep > 0); /*do it until Qstep is elapsed.*/
*ptleft = Dur - Qtime;
if (!errcode && Saveflag && *ptleft == 0) errcode = savefinaloutput();
/* if needed, push forward hydraulic simulation again, so that hyd and wq states are consistent. */
if (Qtime == Htime && Htime < Dur) {
updateTanklevels();
if ( (errcode = runhyd(&hydtime)) ||
(errcode = nexthydLT(&hydstep))
) return errcode;
// If simulating WQ:
if (Qualflag != NONE && Qtime < Dur) {
// Compute reaction rate coeffs.
if (Reactflag && Qualflag != AGE) ratecoeffs();
// Initialize pipe segments (at time 0) or
// else re-orient segments if flow reverses.
if (Qtime == 0) initsegs();
else reorientsegs();
}
Htime = hydtime + hydstep;
}
/* Update reported simulation time */
*pstime = Qtime;
return(errcode);
}
int DLLEXPORT ENcloseHQ() {
int errcode = 0;
if ( (errcode = ENcloseQ()) || (errcode = ENcloseH()) )
return errcode;
return errcode;
}
long timestepLT(void) {
/* computes time step to advance hydraulic simulation, but don't
update tank levels. Instead, let nextqual() do the job. */
long n,t,tstep;
/* Normal time step is hydraulic time step */
tstep = Hstep;
/* Revise time step based on time until next demand period */
n = ((Htime+Pstart)/Pstep) + 1; /* Next pattern period */
t = n*Pstep - Htime; /* Time till next period */
if (t > 0 && t < tstep) tstep = t;
/* Revise time step based on time until next reporting period */
t = Rtime - Htime;
if (t > 0 && t < tstep) tstep = t;
/* Revise time step based on smallest time to fill or drain a tank */
tanktimestep(&tstep);
/* Revise time step based on smallest time to activate a control */
controltimestep(&tstep);
/* Evaluate rule-based controls (which will also update tank levels) */
if (Nrules > 0) ruletimestep(&tstep);
return(tstep);
}
int nexthydLT(long *tstep) {
/* finds length of next time step but don't updates tank volumnes and tank
levels and rule-based contol actions. don't save
results to hydraulics file. don't consider Report time. */
long hydstep; /* Actual time step */
int errcode = 0; /* Error code */
if (Haltflag) Htime = Dur;
/* Compute next time step & update tank levels */
*tstep = 0;
hydstep = 0;
if (Htime < Dur) hydstep = timestepLT();
/* Compute pumping energy */
if (Dur == 0) addenergy(0);
else if (Htime < Dur) addenergy(hydstep);
/* Update current time. */
if (Htime < Dur) /* More time remains */
{
Htime += hydstep;
}
else
{
Htime++; /* Force completion of analysis */
}
*tstep = hydstep;
return(errcode);
}
void updateTanklevels() { //Prior to doing hydraulic simulation, update the tank levels
int i,n;
for (i=1; i<=Ntanks; i++) {
/* Skip reservoirs */
if (Tank[i].A == 0.0) continue;
n = Tank[i].Node;
/* Check if tank full/empty within next second */
if (Tank[i].V + D[n] >= Tank[i].Vmax) Tank[i].V = Tank[i].Vmax;
if (Tank[i].V - D[n] <= Tank[i].Vmin) Tank[i].V = Tank[i].Vmin;
H[n] = tankgrade(i,Tank[i].V);
}
}